login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189442
a(n) = A140230(n) / A016116(n-1).
1
1, 3, 1, -3, -5, -7, -1, 7, 9, 11, 1, -11, -13, -15, -1, 15, 17, 19, 1, -19, -21, -23, -1, 23, 25, 27, 1, -27, -29, -31, -1, 31, 33, 35, 1, -35, -37, -39, -1, 39, 41, 43, 1, -43, -45, -47, -1, 47, 49, 51, 1, -51, -53, -55, -1, 55, 57, 59, 1, -59, -61, -63, -1, 63
OFFSET
1,2
COMMENTS
If grouped into blocks of four,
1, 3, 1, -3,
-5, -7, -1, 7,
9, 11, 1, -11,
-13, -15, -1, 15
17, 19, 1, -19.
we see that a(4n+1) + a(4n+2) + a(4n+3) + a(4n+4) = (-1)^n*(2+4*n).
FORMULA
a(n) = -2*a(n-4) - a(n-8). a(n) + a(n-4) = period length 8: repeat -4, -4, 0, 4, 4, 4, 0 -4.
G.f. x*(x-1)*(x^4-2*x-1)*(1+x)^2 / (x^4+1)^2. - R. J. Mathar, Jun 02 2011
a(n) = (-1)^floor(n/4)*(1+3*n+(n-1)*(-1)^n-4*cos(n*Pi/2)+2*(n-1)*sin(n*Pi/2) )/4. - Wesley Ivan Hurt, May 08 2021
PROG
(PARI) Vec(x*(x-1)*(x^4-2*x-1)*(1+x)^2 / (x^4+1)^2+O(x^99)) \\ Charles R Greathouse IV, Jun 08 2011
CROSSREFS
Sequence in context: A321906 A321904 A321903 * A320562 A320561 A321902
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Apr 22 2011
EXTENSIONS
More terms from Jinyuan Wang, Feb 26 2020
STATUS
approved