login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190399
Number of ways to place 4 nonattacking grasshoppers on a toroidal chessboard of size n x n.
3
0, 1, 54, 1068, 8550, 45873, 177968, 562032, 1519560, 3662625, 8057390, 16477020, 31712850, 58018793, 101639700, 171525568, 280160068, 444636297, 687881890, 1040201500, 1541008350, 2240952065, 3204279960, 4511682288
OFFSET
1,3
COMMENTS
The Grasshopper moves on the same lines as a queen, but must jump over a hurdle to land on the square immediately beyond.
FORMULA
a(n) = 1/24*n^2*(n^6 -6*n^4 -96*n^3 +347*n^2 +96*n -726 +96*(-1)^n), n>4.
G.f.: -x^2*(80*x^14 -444*x^13 +768*x^12 +108*x^11 -1824*x^10 +1600*x^9 +1025*x^8 -1200*x^7 +708*x^6 +1772*x^5 +7254*x^4 +2788*x^3 +756*x^2 +48*x +1)/((x-1)^9*(x+1)^3).
MATHEMATICA
CoefficientList[Series[- x (80 x^14 - 444 x^13 + 768 x^12 + 108 x^11 - 1824 x^10 + 1600 x^9 + 1025 x^8 - 1200 x^7 + 708 x^6 + 1772 x^5 + 7254 x^4 + 2788 x^3 + 756 x^2 + 48 x + 1) / ((x - 1)^9 (x + 1)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 03 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, May 10 2011
STATUS
approved