The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A009119 Expansion of e.g.f. cos(x/cosh(x)) (even powers only). 4
 1, -1, 13, -301, 11705, -698521, 59340997, -6782462597, 1000434618609, -184576848771889, 41577074746699261, -11216502744649033437, 3567416307426404300713, -1320192785381894987925961, 562163981454375064332029365, -272809563505907130928868599861 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..238 FORMULA a(n) = 2*Sum_{k=1..n-1} binomial(2*n,2*k)*Sum_{j=0..(n-k)} binomial(k+j-1,j)*4^(n-k-j)*Sum_{i=0..j} (i-j)^(2*n-2*k)*binomial(2*j,i)*(-1)^(k+j-i) +(-1)^n. - Vladimir Kruchinin, Jun 16 2011 MATHEMATICA With[{nn=30}, Take[CoefficientList[Series[Cos[x/Cosh[x]], {x, 0, nn}], x] Range[ 0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Jul 07 2017 *) PROG (Maxima) a(n):=2*sum(binomial(2*n, 2*k)*sum(binomial(k+j-1, j)*4^(n-k-j)*sum((i-j)^(2*n-2*k)*binomial(2*j, i)*(-1)^(k+j-i), i, 0, j), j, 0, (n-k)), k, 1, n-1)+(-1)^n; /* Vladimir Kruchinin, Jun 16 2011 */ (PARI) x='x+O('x^50); v=Vec(serlaplace(cos(x/cosh(x)))); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Jul 26 2018 CROSSREFS Sequence in context: A076130 A035272 A296319 * A322734 A331657 A142425 Adjacent sequences:  A009116 A009117 A009118 * A009120 A009121 A009122 KEYWORD sign AUTHOR EXTENSIONS Extended with signs by Olivier Gérard, Mar 15 1997 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 09:03 EDT 2020. Contains 337298 sequences. (Running on oeis4.)