login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009119
Expansion of e.g.f. cos(x/cosh(x)) (even powers only).
4
1, -1, 13, -301, 11705, -698521, 59340997, -6782462597, 1000434618609, -184576848771889, 41577074746699261, -11216502744649033437, 3567416307426404300713, -1320192785381894987925961, 562163981454375064332029365, -272809563505907130928868599861
OFFSET
0,3
LINKS
FORMULA
a(n) = 2*Sum_{k=1..n-1} binomial(2*n,2*k)*Sum_{j=0..(n-k)} binomial(k+j-1,j)*4^(n-k-j)*Sum_{i=0..j} (i-j)^(2*n-2*k)*binomial(2*j,i)*(-1)^(k+j-i) +(-1)^n. - Vladimir Kruchinin, Jun 16 2011
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[Cos[x/Cosh[x]], {x, 0, nn}], x] Range[ 0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Jul 07 2017 *)
PROG
(Maxima)
a(n):=2*sum(binomial(2*n, 2*k)*sum(binomial(k+j-1, j)*4^(n-k-j)*sum((i-j)^(2*n-2*k)*binomial(2*j, i)*(-1)^(k+j-i), i, 0, j), j, 0, (n-k)), k, 1, n-1)+(-1)^n; /* Vladimir Kruchinin, Jun 16 2011 */
(PARI) x='x+O('x^50); v=Vec(serlaplace(cos(x/cosh(x)))); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Jul 26 2018
CROSSREFS
Sequence in context: A076130 A035272 A296319 * A322734 A331657 A142425
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved