OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..322
Eric Weisstein's World of Mathematics, Legendre Polynomial
FORMULA
a(n) = central coefficient of (1 + (2*n - 1)*x + n*(n - 1)*x^2)^n.
a(n) = [x^n] 1 / sqrt(1 - 2*(2*n - 1)*x + x^2).
a(n) = n! * [x^n] exp((2*n - 1)*x) * BesselI(0,2*sqrt(n*(n - 1))*x).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k * (n - 1)^(n - k).
a(n) = P_n(2*n-1), where P_n is n-th Legendre polynomial.
a(n) = (-1)^n * 2F1(-n, n + 1; 1; n).
a(n) ~ 4^n * n^(n - 1/2) / (exp(1/2) * sqrt(Pi)). - Vaclav Kotesovec, Jan 26 2020
MATHEMATICA
Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[n + k, k] n^k, {k, 0, n}], {n, 1, 16}]]
Table[SeriesCoefficient[1/Sqrt[1 - 2 (2 n - 1) x + x^2], {x, 0, n}], {n, 0, 16}]
Table[LegendreP[n, 2 n - 1], {n, 0, 16}]
Table[(-1)^n Hypergeometric2F1[-n, n + 1, 1, n], {n, 0, 16}]
PROG
(PARI) a(n) = {sum(k=0, n, (-1)^(n - k) * binomial(n, k) * binomial(n+k, k) * n^k)} \\ Andrew Howroyd, Jan 23 2020
(Magma) [&+[(-1)^(n-k)*Binomial(n, k)*Binomial(n+k, k)*n^k:k in [0..n]]:n in [0..16]]; // Marius A. Burtea, Jan 23 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 23 2020
STATUS
approved