login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331657
a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n,k) * binomial(n+k,k) * n^k.
4
1, 1, 13, 305, 10321, 458649, 25289461, 1666406209, 127779121345, 11178899075537, 1098961472475901, 119937806278590321, 14389588419704763409, 1882432013890951832425, 266678501426944160023653, 40673387011956179149166849, 6644919093900517186643470081
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Legendre Polynomial
FORMULA
a(n) = central coefficient of (1 + (2*n - 1)*x + n*(n - 1)*x^2)^n.
a(n) = [x^n] 1 / sqrt(1 - 2*(2*n - 1)*x + x^2).
a(n) = n! * [x^n] exp((2*n - 1)*x) * BesselI(0,2*sqrt(n*(n - 1))*x).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k * (n - 1)^(n - k).
a(n) = P_n(2*n-1), where P_n is n-th Legendre polynomial.
a(n) = (-1)^n * 2F1(-n, n + 1; 1; n).
a(n) ~ 4^n * n^(n - 1/2) / (exp(1/2) * sqrt(Pi)). - Vaclav Kotesovec, Jan 26 2020
MATHEMATICA
Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[n + k, k] n^k, {k, 0, n}], {n, 1, 16}]]
Table[SeriesCoefficient[1/Sqrt[1 - 2 (2 n - 1) x + x^2], {x, 0, n}], {n, 0, 16}]
Table[LegendreP[n, 2 n - 1], {n, 0, 16}]
Table[(-1)^n Hypergeometric2F1[-n, n + 1, 1, n], {n, 0, 16}]
PROG
(PARI) a(n) = {sum(k=0, n, (-1)^(n - k) * binomial(n, k) * binomial(n+k, k) * n^k)} \\ Andrew Howroyd, Jan 23 2020
(Magma) [&+[(-1)^(n-k)*Binomial(n, k)*Binomial(n+k, k)*n^k:k in [0..n]]:n in [0..16]]; // Marius A. Burtea, Jan 23 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 23 2020
STATUS
approved