OFFSET
0,5
LINKS
Seiichi Manyama, Antidiagonals n = 0..139, flattened
Eric Weisstein's World of Mathematics, Legendre Polynomial.
FORMULA
T(n,k) is the coefficient of x^n in the expansion of (1 + (2*k+1)*x + k*(k+1)*x^2)^n.
T(n,k) = Sum_{j=0..n} k^j * (k+1)^(n-j) * binomial(n,j)^2.
T(n,k) = Sum_{j=0..n} k^j * binomial(n,j) * binomial(n+j,j).
n * T(n,k) = (2*k+1) * (2*n-1) * T(n-1,k) - (n-1) * T(n-2,k).
T(n,k) = P_n(2*k+1), where P_n is n-th Legendre polynomial.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 13, 37, 73, 121, 181, ...
1, 63, 305, 847, 1809, 3311, ...
1, 321, 2641, 10321, 28401, 63601, ...
1, 1683, 23525, 129367, 458649, 1256651, ...
MATHEMATICA
T[n_, k_] := LegendreP[n, 2*k + 1]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
PROG
(PARI) {T(n, k) = pollegendre(n, 2*k+1)}
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jun 02 2020
STATUS
approved