login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294946
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of exp(Sum_{j>0} sigma_k(j)*x^j/j) in powers of x.
1
1, 1, 1, 1, 1, 3, 1, 1, 5, 12, 1, 1, 9, 32, 82, 1, 1, 17, 90, 304, 725, 1, 1, 33, 260, 1162, 3537, 8811, 1, 1, 65, 762, 4516, 17435, 52010, 128340, 1, 1, 129, 2252, 17722, 86529, 310193, 895397, 2257687, 1, 1, 257, 6690, 69964, 431675, 1865766, 6286826, 18016416, 45658174
OFFSET
0,6
FORMULA
G.f. of column k: Product_{j>0} 1/(1 - j^j*x^j)^(j^(k-1)).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
3, 5, 9, 17, 33, ...
12, 32, 90, 260, 762, ...
82, 304, 1162, 4516, 17722, ...
725, 3537, 17435, 86529, 431675, ...
CROSSREFS
Columns k=0..2 give A023881, A023882, A294813.
Rows n=0+1, 2 give A000012, A000051(n+1).
Sequence in context: A123162 A213998 A340970 * A083075 A335333 A341470
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Nov 11 2017
STATUS
approved