login
A294946
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of exp(Sum_{j>0} sigma_k(j)*x^j/j) in powers of x.
1
1, 1, 1, 1, 1, 3, 1, 1, 5, 12, 1, 1, 9, 32, 82, 1, 1, 17, 90, 304, 725, 1, 1, 33, 260, 1162, 3537, 8811, 1, 1, 65, 762, 4516, 17435, 52010, 128340, 1, 1, 129, 2252, 17722, 86529, 310193, 895397, 2257687, 1, 1, 257, 6690, 69964, 431675, 1865766, 6286826, 18016416, 45658174
OFFSET
0,6
FORMULA
G.f. of column k: Product_{j>0} 1/(1 - j^j*x^j)^(j^(k-1)).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
3, 5, 9, 17, 33, ...
12, 32, 90, 260, 762, ...
82, 304, 1162, 4516, 17722, ...
725, 3537, 17435, 86529, 431675, ...
CROSSREFS
Columns k=0..2 give A023881, A023882, A294813.
Rows n=0+1, 2 give A000012, A000051(n+1).
Sequence in context: A123162 A213998 A340970 * A083075 A335333 A341470
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Nov 11 2017
STATUS
approved