OFFSET
1,6
LINKS
Heesung Shin and Jiang Zeng, More bijections for Entringer and Arnold families, arXiv:2006.00507 [math.CO], 2020.
FORMULA
T(n,k) is defined by T(1,1) = T(1,-1) = 1, T(n,-n) = 0 (n >= 2), and the recurrence
T(n,k) = T(n,k-1) + T(n-1,-k+1) if n >= k > 1,
T(n,k) = T(n,-1) if n > k = 1,
T(n,k) = T(n,k-1) + T(n-1,-k) if -1 >= k > -n.
EXAMPLE
Triangle begins:
1, 1,
0, 1, 1, 2,
0, 2, 3, 3, 4, 4,
0, 4, 8, 11, 11, 14, 16, 16,
0, 16, 32, 46, 57, 57, 68, 76, 80, 80,
0, 80, 160, 236, 304, 361, 361, 418, 464, 496, 512, 512,
PROG
(PARI) T(n, k) = {if ((n==1) && (k==1), return (1)); if ((n+k) == 0, if (n==1, return(1), return (0))); if ((n>=k) && (k>1), return(T(n, k-1) + T(n-1, 1-k))); if ((k==1) && (n>k), return(T(n, -1))); if ((-1>=k) && (k>=-n), return(T(n, k-1) + T(n-1, -k))); }
tabf(nn) = {for (n=1, nn, for (k=-n, -1, print1(T(n, k), ", "); ); for (k=1, n, print1(T(n, k), ", "); ); print; ); }
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Michel Marcus, Jun 02 2020
STATUS
approved