login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n,k) * binomial(n+k,k) * n^k.
4

%I #19 Sep 08 2022 08:46:25

%S 1,1,13,305,10321,458649,25289461,1666406209,127779121345,

%T 11178899075537,1098961472475901,119937806278590321,

%U 14389588419704763409,1882432013890951832425,266678501426944160023653,40673387011956179149166849,6644919093900517186643470081

%N a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n,k) * binomial(n+k,k) * n^k.

%H Seiichi Manyama, <a href="/A331657/b331657.txt">Table of n, a(n) for n = 0..322</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LegendrePolynomial.html">Legendre Polynomial</a>

%F a(n) = central coefficient of (1 + (2*n - 1)*x + n*(n - 1)*x^2)^n.

%F a(n) = [x^n] 1 / sqrt(1 - 2*(2*n - 1)*x + x^2).

%F a(n) = n! * [x^n] exp((2*n - 1)*x) * BesselI(0,2*sqrt(n*(n - 1))*x).

%F a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k * (n - 1)^(n - k).

%F a(n) = P_n(2*n-1), where P_n is n-th Legendre polynomial.

%F a(n) = (-1)^n * 2F1(-n, n + 1; 1; n).

%F a(n) ~ 4^n * n^(n - 1/2) / (exp(1/2) * sqrt(Pi)). - _Vaclav Kotesovec_, Jan 26 2020

%t Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[n + k, k] n^k, {k, 0, n}], {n, 1, 16}]]

%t Table[SeriesCoefficient[1/Sqrt[1 - 2 (2 n - 1) x + x^2], {x, 0, n}], {n, 0, 16}]

%t Table[LegendreP[n, 2 n - 1], {n, 0, 16}]

%t Table[(-1)^n Hypergeometric2F1[-n, n + 1, 1, n], {n, 0, 16}]

%o (PARI) a(n) = {sum(k=0, n, (-1)^(n - k) * binomial(n,k) * binomial(n+k,k) * n^k)} \\ _Andrew Howroyd_, Jan 23 2020

%o (Magma) [&+[(-1)^(n-k)*Binomial(n,k)*Binomial(n+k,k)*n^k:k in [0..n]]:n in [0..16]]; // _Marius A. Burtea_, Jan 23 2020

%Y Cf. A001850, A006442, A084768, A084769, A110129, A331656.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Jan 23 2020