login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051916 The Greek sequence: 2^a * 3^b * 5^c where a = 0,1,2,3..., b,c in {0,1}, excluding the terms 1,2; that is: (a,b,c) =/= (0,0,0), (1,0,0)):. 8
3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, 80, 96, 120, 128, 160, 192, 240, 256, 320, 384, 480, 512, 640, 768, 960, 1024, 1280, 1536, 1920, 2048, 2560, 3072, 3840, 4096, 5120, 6144, 7680, 8192, 10240, 12288, 15360, 16384, 20480 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Contribution from Reinhard Zumkeller, Mar 19 2010: (Start)

a(n+4) = 2*a(n) for n > 8;

union of A007283, A020707, A020714, and A110286;

intersection of A051037 and A003401 apart from terms 1 and 2. (End)

REFERENCES

George E. Martin: Geometric Constructions. New York: Springer, 1997, p. 140.

LINKS

R. Zumkeller, Table of n, a(n) for n = 1..1000

FORMULA

G.f.: (3x^7+2x^6+2x^5+2x^4+6x^3+5x^2+4x+3)/(1-2x^4).

MATHEMATICA

CoefficientList[Series[(3x^7+2x^6+2x^5+2x^4+6x^3+5x^2+4x+3)/(1-2x^4), {x, 0, 60}], x] (* Harvey P. Dale, Dec 23 2012 *)

PROG

(PARI) Vec((3*x^7+2*x^6+2*x^5+2*x^4+6*x^3+5*x^2+4*x+3)/(1-2*x^4)+O(x^99)) \\ Charles R Greathouse IV, Oct 12 2012

CROSSREFS

Sequence in context: A026506 A198382 A173946 * A130216 A120162 A002859

Adjacent sequences:  A051913 A051914 A051915 * A051917 A051918 A051919

KEYWORD

nonn,easy,nice

AUTHOR

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Dec 17 1999

EXTENSIONS

More terms from James A. Sellers, Dec 18 1999

Offset corrected by Reinhard Zumkeller, Mar 10 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 12:47 EDT 2020. Contains 334840 sequences. (Running on oeis4.)