login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120162
a(n) = 3 + floor((2 + Sum_{j=1..n-1} a(j))/4).
1
3, 4, 5, 6, 8, 10, 12, 15, 19, 24, 30, 37, 46, 58, 72, 90, 113, 141, 176, 220, 275, 344, 430, 538, 672, 840, 1050, 1313, 1641, 2051, 2564, 3205, 4006, 5008, 6260, 7825, 9781, 12226, 15283, 19103
OFFSET
1,1
LINKS
MATHEMATICA
f[n_, p_, q_]:= f[n, p, q]= p +Quotient[q + Sum[f[k, p, q], {k, n-1}], 4];
A120162[n_]:= f[n, 3, 2];
Table[A120162[n], {n, 60}] (* G. C. Greubel, Sep 02 2023 *)
PROG
(Magma)
function f(n, a, b)
t:=0;
for k in [1..n-1] do
t+:= a+Floor((b+t)/4);
end for;
return t;
end function;
g:= func< n, a, b | f(n+1, a, b)-f(n, a, b) >;
A120162:= func< n | g(n, 3, 2) >;
[A120162(n): n in [1..60]]; // G. C. Greubel, Sep 02 2023
(SageMath)
@CachedFunction
def f(n, p, q): return p + (q + sum(f(k, p, q) for k in range(1, n)))//4
def A120162(n): return f(n, 3, 2)
[A120162(n) for n in range(1, 61)] # G. C. Greubel, Sep 02 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Graeme McRae, Jun 10 2006
EXTENSIONS
Name edited by G. C. Greubel, Sep 02 2023
STATUS
approved