Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #89 Dec 19 2023 17:41:06
%S 5,10,20,40,80,160,320,640,1280,2560,5120,10240,20480,40960,81920,
%T 163840,327680,655360,1310720,2621440,5242880,10485760,20971520,
%U 41943040,83886080,167772160,335544320,671088640,1342177280,2684354560,5368709120,10737418240
%N a(n) = 5 * 2^n.
%C Same as Pisot sequences E(5,10), L(5,10), P(5,10), T(5,10). See A008776 for definitions of Pisot sequences.
%C The first differences are the sequence itself. - _Alexandre Wajnberg_ & _Eric Angelini_, Sep 07 2005
%C 5 times powers of 2. - _Omar E. Pol_, Dec 16 2008
%C Subsequence of A051916. - _Reinhard Zumkeller_, Mar 20 2010
%C With the addition of "2, 3," at the beginning, this sequence gives terms (n + 3) through the first term greater than 2^n, for n odd, of the negabinary Keith sequence for 2^n, thus proving that with the exception of 2 itself, no odd-indexed power of 2 is a negabinary Keith number (see A188381). - _Alonso del Arte_, Feb 02 2012
%C Let b(0) = 5 and b(n+1) = the smallest number not in the sequence such that b(n+1) - Product_{i=0..n} b(i) divides b(n+1) - Sum_{i=0..n} b(i). Then b(n+2) = a(n) for n > 0. - _Derek Orr_, Jan 15 2015
%H Vincenzo Librandi, <a href="/A020714/b020714.txt">Table of n, a(n) for n = 0..238</a>
%H John Elias, <a href="/A020714/a020714.png">Illustration: Alternating Tetrahedrons of Tetrahedrons</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.
%H Petro Kosobutskyy, Anastasiia Yedyharova, and Taras Slobodzyan, <a href="https://doi.org/10.23939/cds2023.01.121">From Newton's binomial and Pascal's triangle to Collatz's problem</a>, Comp. Des. Sys., Theor. Practice (2023) Vol. 5, No. 1, 121-127.
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1003">Encyclopedia of Combinatorial Structures 1003</a>.
%H Everett Sullivan, <a href="https://arxiv.org/abs/1611.02771">Linear chord diagrams with long chords</a>, arXiv preprint arXiv:1611.02771 [math.CO], 2016. See Table 1.
%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (2).
%F a(n) = 5*2^n. a(n) = 2*a(n-1).
%F G.f.: 5/(1-2*x).
%F If m is a term greater than 5 of this sequence then m = 5*phi(phi(m)). - _Farideh Firoozbakht_, Aug 16 2005
%F a(n) = A118416(n+1,3) for n>2. - _Reinhard Zumkeller_, Apr 27 2006
%F a(n) = A000079(n)*5. - _Omar E. Pol_, Dec 16 2008
%F a(n) = A173786(n+2,n) for n > 1. - _Reinhard Zumkeller_, Feb 28 2010
%F a(n) = A001045(n+4) - A001045(n). - _Paul Curtz_, Nov 08 2012
%F Sum_{n>=1} 1/a(n) = 2/5. - _Amiram Eldar_, Oct 28 2020
%F E.g.f.: 5*exp(2*x). - _Stefano Spezia_, May 15 2021
%t Table[5*2^n, {n, 0, 31}] (* _Vladimir Joseph Stephan Orlovsky_, Dec 16 2008 *)
%t NestList[2#&,5,40] (* _Harvey P. Dale_, Mar 13 2022 *)
%o (Magma) [5*2^n: n in [0..40]]; // _Vincenzo Librandi_, Apr 28 2011
%o (PARI) a(n)=5<<n \\ _Charles R Greathouse IV_, Sep 24 2015
%Y Row sums of (4, 1)-Pascal triangle A093561.
%Y Row sums of (9, 1)-Pascal triangle A093644.
%Y Row sums of (1, 4)-Pascal triangle A095666 (with leading 4).
%Y Cf. A000079, A001045, A008776, A051916, A118416, A173786, A188381.
%K nonn,easy
%O 0,1
%A _David W. Wilson_