

A020750


Pisot sequence T(5,9), a(n) = floor(a(n1)^2/a(n2)).


2



5, 9, 16, 28, 49, 85, 147, 254, 438, 755, 1301, 2241, 3860, 6648, 11449, 19717, 33955, 58474, 100698, 173411, 298629, 514265, 885608, 1525092, 2626337, 4522773, 7788595, 13412614, 23097646, 39776083, 68497749, 117958865, 203135052, 349815584, 602411753
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Colin Barker, Table of n, a(n) for n = 0..1000


FORMULA

a(n) = 2*a(n1)  2*a(n4) + a(n5) (holds at least up to n = 40000 but is not known to hold in general).
Note the warning in A010925 from Pab Ter (pabrlos(AT)yahoo.com), May 23 2004: [A010925] and other examples show that it is essential to reject conjectured generating functions for Pisot sequences until a proof or reference is provided.  N. J. A. Sloane, Jul 26 2016


MATHEMATICA

RecurrenceTable[{a[0] == 5, a[1] == 9, a[n] == Floor[a[n  1]^2/a[n  2]]}, a, {n, 0, 40}] (* Bruno Berselli, Feb 04 2016 *)


PROG

(MAGMA) Iv:=[5, 9]; [n le 2 select Iv[n] else Floor(Self(n1)^2/Self(n2)): n in [1..40]]; // Bruno Berselli, Feb 04 2016
(PARI) pisotT(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n1]^2/a[n2]));
a
}
pisotT(50, 5, 9) \\ Colin Barker, Jul 29 2016


CROSSREFS

See A008776 for definitions of Pisot sequences.
Sequence in context: A072174 A188555 A020958 * A020713 A090990 A225605
Adjacent sequences: A020747 A020748 A020749 * A020751 A020752 A020753


KEYWORD

nonn


AUTHOR

David W. Wilson


EXTENSIONS

Deleted unproved recurrence and program based on it.  N. J. A. Sloane, Feb 04 2016


STATUS

approved



