login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344822
Numbers m with decimal expansion (d_1, ..., d_k) such that d_i = m * i mod 10 for i = 1..k.
4
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 505, 50505, 246802, 482604, 628406, 864208, 5050505, 505050505, 12345678901, 24680246802, 36925814703, 48260482604, 50505050505, 62840628406, 74185296307, 86420864208, 98765432109, 5050505050505, 505050505050505, 2468024680246802
OFFSET
1,3
COMMENTS
This sequence is infinite as it contains 5 * A094028(k) for any k > 0.
Also contains terms with patterns 2(46802)^k, 4(82604)^k, 6(28406)^k, 8(64208)^k, 1(2345678901)^k, 3(6925814703)^k, 7(4185296307)^k, 9(8765432109)^k for k >= 0, where ^ denotes repeated concatenation; all terms have first and last digits the same. - Michael S. Branicky, May 29 2021
LINKS
EXAMPLE
- 4 * 1 = 4 mod 10,
- 4 * 2 = 8 mod 10,
- 4 * 3 = 2 mod 10,
- 4 * 4 = 6 mod 10,
- 4 * 5 = 0 mod 10,
- 4 * 6 = 4 mod 10,
so 482604 is a term.
PROG
(PARI) is(n) = { my (d=digits(n)); for (k=1, #d, if (d[k] != (n*k)%10, return (0))); return (1) }
(PARI) See Links section.
(Python)
def ok(m):
d = str(m)
return all(d[i-1] == str((m*i)%10) for i in range(1, len(d)+1))
print(list(filter(ok, range(10**6)))) # Michael S. Branicky, May 29 2021
(Python)
def auptod(maxdigits):
alst = [0]
for k in range(1, maxdigits+1):
for d1 in range(1, 10):
d = [(d1*i)%10 for i in range(1, k+1)]
if d1 == d[-1]: alst.append(int("".join(map(str, d))))
return alst
print(auptod(16)) # Michael S. Branicky, May 29 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, May 29 2021
STATUS
approved