login
A307887
Least number k such that the determinant of the symmetric Toeplitz matrix formed by its decimal digits is equal to n.
4
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 433, 65, 42, 76, 455, 41, 40, 98, 457, 766, 64, 52, 243, 788, 51, 50, 413, 63, 86, 142, 21024, 3055, 62, 74, 645, 61, 60, 524, 25624, 85, 73, 756, 20031, 514, 412, 72, 23688, 152, 71, 70, 641, 364, 355, 2542, 245, 83, 95, 798, 625
OFFSET
0,3
LINKS
EXAMPLE
| 4 3 3 |
a(10) = 433 because det | 3 4 3 | = 10.
| 3 3 4 |
.
| 2 5 6 2 4 |
| 5 2 5 6 2 |
a(38)= 25624 because det | 6 5 2 5 6 | = 38.
| 2 6 5 2 5 |
| 4 2 6 5 2 |
MAPLE
with(numtheory): with(linalg): P:=proc(q) local a, c, i, k, n; print(0);
for i from 1 to q do for n from 1 to q do a:=convert(n, base, 10):
c:=[]: for k from 1 to nops(a) do c:=[op(c), a[-k]]: od:
if det(toeplitz(c))=i then print(n); break: fi: od: od: end: P(10^6);
CROSSREFS
Cf. A306593.
Sequence in context: A046469 A335151 A065110 * A362843 A344822 A004893
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, May 03 2019
STATUS
approved