login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335151
Numbers m equal to |d_1^k + Sum_{j=2..k} (-1)^j*d_j^k| where d_1 d_2 ... d_k is the decimal expansion of m.
1
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 370, 5295, 8208, 54900, 54901, 417889, 136151168, 9905227379, 282185923199, 2527718648914, 14441494066365380, 14441494066365381, 12317155720243258398, 13393750378644587854
OFFSET
1,3
COMMENTS
In other words: m = |digit1^k + digit2^k - digit3^k + digit4^k -...+/- lastdigit^k|, where k is the number of digits. Note that the sign of the first two addends is always positive.
Concept derived from the Armstrong numbers (A005188).
Note that a(15) = a(14) + 1 and a(22) = a(21) + 1. - Chai Wah Wu, May 31 2020
EXAMPLE
370 = |3^3 + 7^3 - 0^3|.
5295 = |5^4 + 2^4 - 9^4 + 5^4|.
8208 = |8^4 + 2^4 - 0^4 + 8^4|.
54900 = |5^5 + 4^5 - 9^5 + 0^5 - 0^5|.
54901 = |5^5 + 4^5 - 9^5 + 0^5 - 1^5|.
MATHEMATICA
ss[n_] := ss[n] = Join[{1}, -(-1)^Range[n-1]]; Select[ Range[0, 500000], (d = IntegerDigits[#]; # == Abs@ Total[d^Length[d] ss@ Length@ d]) &] (* Giovanni Resta, May 25 2020 *)
PROG
(PARI) is(k) = my(v=digits(k)); !k || abs(v[1]^#v + sum(i=2, #v, (-1)^i*v[i]^#v))==k; \\ Jinyuan Wang, May 28 2020
CROSSREFS
Sequence in context: A308110 A306593 A046469 * A065110 A307887 A362843
KEYWORD
nonn,base,fini,more
AUTHOR
Lukas R. Mansour, May 25 2020
EXTENSIONS
a(18)-a(20) from Giovanni Resta, May 25 2020
a(21)-a(22) from Chai Wah Wu, May 31 2020
a(23)-a(24) from Chai Wah Wu, Jun 01 2020
STATUS
approved