OFFSET
1,3
COMMENTS
In other words: m = |digit1^k + digit2^k - digit3^k + digit4^k -...+/- lastdigit^k|, where k is the number of digits. Note that the sign of the first two addends is always positive.
Concept derived from the Armstrong numbers (A005188).
Note that a(15) = a(14) + 1 and a(22) = a(21) + 1. - Chai Wah Wu, May 31 2020
EXAMPLE
370 = |3^3 + 7^3 - 0^3|.
5295 = |5^4 + 2^4 - 9^4 + 5^4|.
8208 = |8^4 + 2^4 - 0^4 + 8^4|.
54900 = |5^5 + 4^5 - 9^5 + 0^5 - 0^5|.
54901 = |5^5 + 4^5 - 9^5 + 0^5 - 1^5|.
MATHEMATICA
ss[n_] := ss[n] = Join[{1}, -(-1)^Range[n-1]]; Select[ Range[0, 500000], (d = IntegerDigits[#]; # == Abs@ Total[d^Length[d] ss@ Length@ d]) &] (* Giovanni Resta, May 25 2020 *)
PROG
(PARI) is(k) = my(v=digits(k)); !k || abs(v[1]^#v + sum(i=2, #v, (-1)^i*v[i]^#v))==k; \\ Jinyuan Wang, May 28 2020
CROSSREFS
KEYWORD
nonn,base,fini,more
AUTHOR
Lukas R. Mansour, May 25 2020
EXTENSIONS
a(18)-a(20) from Giovanni Resta, May 25 2020
a(21)-a(22) from Chai Wah Wu, May 31 2020
a(23)-a(24) from Chai Wah Wu, Jun 01 2020
STATUS
approved