login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344748
Numbers m with decimal expansion (d_k, ..., d_1) such that d_i = m * i mod 10 for i = 1..k.
3
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 21, 26, 42, 47, 63, 68, 84, 89, 147, 284, 321, 468, 505, 642, 789, 826, 963, 2468, 2963, 4321, 4826, 6284, 6789, 8147, 8642, 50505, 52963, 54321, 56789, 58147, 208642, 258147, 406284, 456789, 604826, 654321, 802468, 852963
OFFSET
1,3
COMMENTS
Positive terms have no trailing zero in decimal representation (A067251), and are uniquely determined by their final digit d (A010879) and the number of digits, say k, in their decimal expansion (A055642); d*k cannot be a multiple of 10.
If m belongs to the sequence, then A217657(m) also belongs to the sequence.
LINKS
EXAMPLE
- 6 * 1 = 6 mod 10,
- 6 * 2 = 2 mod 10,
- 6 * 3 = 8 mod 10,
- 6 * 4 = 4 mod 10,
- so 4826 belongs to the sequence.
PROG
(PARI) is(n) = { my (r=n); for (k=1, oo, if (r==0, return (1), (n*k)%10!=r%10, return (0), r\=10)) }
(PARI) print (setbinop((d, k) -> sum(i=1, k, 10^(i-1) * ((d*i)%10)), [1..9], [0..6]))
(Python)
def ok(m):
d = str(m)
return all(d[-i] == str((m*i)%10) for i in range(1, len(d)+1))
print(list(filter(ok, range(10**6)))) # Michael S. Branicky, May 29 2021
(Python)
def auptod(maxdigits):
alst = [0]
for k in range(1, maxdigits+1):
aklst = []
for d1 in range(1, 10):
d = [(d1*i)%10 for i in range(k, 0, -1)]
if d[0] != 0: aklst.append(int("".join(map(str, d))))
alst.extend(sorted(aklst))
return alst
print(auptod(6)) # Michael S. Branicky, May 29 2021
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Rémy Sigrist, May 28 2021
STATUS
approved