login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097962
Slowest increasing sequence where the digits, taken one by one, show the pattern even/odd/even/odd/even...
5
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 21, 23, 25, 27, 29, 41, 43, 45, 47, 49, 61, 63, 65, 67, 69, 81, 83, 85, 87, 89, 210, 301, 410, 501, 610, 701, 810, 901, 2101, 2103, 2105, 2107, 2109, 2121, 2123, 2125, 2127, 2129, 2141, 2143, 2145, 2147, 2149, 2161, 2163, 2165, 2167, 2169
OFFSET
0,3
COMMENTS
Distinct from A098951, which is not required to be increasing. The first 31 terms are identical, but here a(30) = 210 must be followed by a(31) = 301, while there 210 is followed by 10. - M. F. Hasler, Mar 23 2019
LINKS
MATHEMATICA
nn = 57; c[_] := False; a[0] = j = 0; p = 1; c[0] = True;
Do[k = j;
While[(Set[q, Mod[#[[-1]], 2]];
Nand[! c[k], Mod[#[[1]], 2] == p,
Union[Length /@ SplitBy[#, EvenQ]] == {1}]) &[IntegerDigits[k]],
k++]; Set[{a[n], j, p, c[k]}, {k, k, 1 - q, True}], {n, nn}];
Array[a, nn + 1, 0] (* Michael De Vlieger, Dec 09 2024 *)
PROG
(PARI) nxt(n, d=digits(n))={if(!bittest(#d, 0), forstep(i=#d, 1, -1, 10>(d[i]+=2)&& return(fromdigits(d)); d[i]-=10); d||return(1); d[#d]=if(d[1]%=2, 10, 21); fromdigits(Vecrev(d)), 10>d[1]+=1, d[1]=d[1]*10+d[#d]; fromdigits(d)\10, d[1]=21; fromdigits(d))}
vector(50, i, t=if(i>1, nxt(t), 0)) \\ M. F. Hasler, Mar 23 2019
CROSSREFS
Sequence in context: A103951 A342304 A098951 * A247813 A122639 A344748
KEYWORD
nonn,base
AUTHOR
Eric Angelini, Sep 06 2004
STATUS
approved