

A217657


Delete the initial digit in decimal representation of n.


8



0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,13


COMMENTS

n is the concatenation of A000030(n) and a(n).
a(110) = 10 is the first term > 9. The sequence consists of 10 repetitions of 0 (n = 0..9), then 9 repetitions of {0, ..., 9} (n = 10..99), then 9 repetitions of {0, ..., 99} (n = 100..999), and so on.  M. F. Hasler, Oct 18 2017


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000


FORMULA

a(n) = 0 if n <= 9, otherwise 10*a(floor(n/10)) + n mod 10.
a(n) = n mod 10^floor(log_10(n)), a(0) = 0.  M. F. Hasler, Oct 18 2017


MATHEMATICA

Array[FromDigits@ Rest@ IntegerDigits@ # &, 121, 0] (* Michael De Vlieger, Dec 22 2019 *)


PROG

(Haskell)
a217657 n  n <= 9 = 0
 otherwise = 10 * a217657 n' + m where (n', m) = divMod n 10
(PARI) apply( A217657(n)=n%10^logint(n+!n, 10), [0..199]) \\ M. F. Hasler, Oct 18 2017, edited Dec 22 2019


CROSSREFS

Cf. A059995 (drop final digit of n), A000030 (initial digit of n), A202262.
Sequence in context: A118943 A010879 A179636 * A175419 A175422 A175423
Adjacent sequences: A217654 A217655 A217656 * A217658 A217659 A217660


KEYWORD

nonn,base,look


AUTHOR

Reinhard Zumkeller, Oct 10 2012


EXTENSIONS

Data extended to include the first terms larger than 9, by M. F. Hasler, Dec 22 2019


STATUS

approved



