OFFSET
0,13
COMMENTS
When n - a(n)*10^[log_10 n] >= 10^[(log_10 n) - 1], where [] denotes floor, or when n < 100 and 10|n, n is the concatenation of A000030(n) and a(n) - corrected by Glen Whitney, Jul 01 2022
a(110) = 10 is the first term > 9. The sequence consists of 10 repetitions of 0 (n = 0..9), then 9 repetitions of {0, ..., 9} (n = 10..99), then 9 repetitions of {0, ..., 99} (n = 100..999), and so on. - M. F. Hasler, Oct 18 2017
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
FORMULA
a(n) = 0 if n <= 9, otherwise 10*a(floor(n/10)) + n mod 10.
a(n) = n mod 10^floor(log_10(n)), a(0) = 0. - M. F. Hasler, Oct 18 2017
MATHEMATICA
Array[FromDigits@ Rest@ IntegerDigits@ # &, 121, 0] (* Michael De Vlieger, Dec 22 2019 *)
PROG
(Haskell)
a217657 n | n <= 9 = 0
| otherwise = 10 * a217657 n' + m where (n', m) = divMod n 10
(PARI) apply( A217657(n)=n%10^logint(n+!n, 10), [0..199]) \\ M. F. Hasler, Oct 18 2017, edited Dec 22 2019
(Python)
def a(n): return 0 if n < 10 else int(str(n)[1:])
print([a(n) for n in range(121)]) # Michael S. Branicky, Jul 01 2022
CROSSREFS
KEYWORD
AUTHOR
Reinhard Zumkeller, Oct 10 2012
EXTENSIONS
Data extended to include the first terms larger than 9, by M. F. Hasler, Dec 22 2019
STATUS
approved