login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217654
Triangular array read by rows. T(n,k) is the number of unlabeled directed graphs of n nodes that have exactly k isolated nodes.
2
1, 0, 1, 2, 0, 1, 13, 2, 0, 1, 202, 13, 2, 0, 1, 9390, 202, 13, 2, 0, 1, 1531336, 9390, 202, 13, 2, 0, 1, 880492496, 1531336, 9390, 202, 13, 2, 0, 1, 1792477159408, 880492496, 1531336, 9390, 202, 13, 2, 0, 1, 13026163465206704, 1792477159408, 880492496, 1531336, 9390, 202, 13, 2, 0, 1
OFFSET
0,4
COMMENTS
Row sums give A000273.
Column k = 0 is A053598.
LINKS
FORMULA
O.g.f.: A(x)*(1-x)/(1-y*x) where A(x) is o.g.f. for A000273.
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
2, 0, 1;
13, 2, 0, 1;
202, 13, 2, 0, 1;
9390, 202, 13, 2, 0, 1;
1531336, 9390, 202, 13, 2, 0, 1;
...
MAPLE
b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(p[j]-1+add(
igcd(p[k], p[j]), k=1..j-1)*2, j=1..nops(p)))([l[], 1$n])),
add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
end:
g:= proc(n) option remember; b(n$2, []) end:
T:= (n, k)-> g(n-k)-`if`(k<n, g(n-k-1), 0):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Sep 04 2019
MATHEMATICA
Needs["Combinatorica`"]; f[list_]:=Insert[Select[list, #>0&], 0, -2]; nn=10; s=Sum[NumberOfDirectedGraphs[n]x^n, {n, 0, nn}]; Drop[Flatten[Map[f, CoefficientList[Series[s (1-x)/(1-y x), {x, 0, nn}], {x, y}]]], 1]
(* Second program: *)
b[n_, i_, l_List] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[p[[j]] - 1 + Sum[GCD[p[[k]], p[[j]]], {k, 1, j - 1}]*2, {j, 1, Length[p]}]][Join[l, Array[1&, n]]]), Sum[b[n - i*j, i - 1, Join[l, Array[i&, j]]]/j!/i^j, {j, 0, n/i}]];
g[n_] := g[n] = b[n, n, {}];
T[n_, k_] := g[n - k] - If[k < n, g[n - k - 1], 0];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A367381 A322221 A328924 * A267164 A158234 A270882
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Oct 09 2012
STATUS
approved