login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A217654
Triangular array read by rows. T(n,k) is the number of unlabeled directed graphs of n nodes that have exactly k isolated nodes.
2
1, 0, 1, 2, 0, 1, 13, 2, 0, 1, 202, 13, 2, 0, 1, 9390, 202, 13, 2, 0, 1, 1531336, 9390, 202, 13, 2, 0, 1, 880492496, 1531336, 9390, 202, 13, 2, 0, 1, 1792477159408, 880492496, 1531336, 9390, 202, 13, 2, 0, 1, 13026163465206704, 1792477159408, 880492496, 1531336, 9390, 202, 13, 2, 0, 1
OFFSET
0,4
COMMENTS
Row sums give A000273.
Column k = 0 is A053598.
LINKS
FORMULA
O.g.f.: A(x)*(1-x)/(1-y*x) where A(x) is o.g.f. for A000273.
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
2, 0, 1;
13, 2, 0, 1;
202, 13, 2, 0, 1;
9390, 202, 13, 2, 0, 1;
1531336, 9390, 202, 13, 2, 0, 1;
...
MAPLE
b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(p[j]-1+add(
igcd(p[k], p[j]), k=1..j-1)*2, j=1..nops(p)))([l[], 1$n])),
add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
end:
g:= proc(n) option remember; b(n$2, []) end:
T:= (n, k)-> g(n-k)-`if`(k<n, g(n-k-1), 0):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Sep 04 2019
MATHEMATICA
Needs["Combinatorica`"]; f[list_]:=Insert[Select[list, #>0&], 0, -2]; nn=10; s=Sum[NumberOfDirectedGraphs[n]x^n, {n, 0, nn}]; Drop[Flatten[Map[f, CoefficientList[Series[s (1-x)/(1-y x), {x, 0, nn}], {x, y}]]], 1]
(* Second program: *)
b[n_, i_, l_List] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[p[[j]] - 1 + Sum[GCD[p[[k]], p[[j]]], {k, 1, j - 1}]*2, {j, 1, Length[p]}]][Join[l, Array[1&, n]]]), Sum[b[n - i*j, i - 1, Join[l, Array[i&, j]]]/j!/i^j, {j, 0, n/i}]];
g[n_] := g[n] = b[n, n, {}];
T[n_, k_] := g[n - k] - If[k < n, g[n - k - 1], 0];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A367381 A322221 A328924 * A267164 A158234 A270882
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Oct 09 2012
STATUS
approved