login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210552
Triangle of coefficients of polynomials u(n,x) jointly generated with A210553; see the Formula section.
3
1, 1, 2, 1, 3, 3, 1, 4, 5, 5, 1, 5, 7, 10, 8, 1, 6, 9, 16, 18, 13, 1, 7, 11, 23, 31, 33, 21, 1, 8, 13, 31, 47, 62, 59, 34, 1, 9, 15, 40, 66, 101, 119, 105, 55, 1, 10, 17, 50, 88, 151, 205, 227, 185, 89, 1, 11, 19, 61, 113, 213, 321, 414, 426, 324, 144, 1, 12, 21, 73
OFFSET
1,3
COMMENTS
Let T(n,k) denote the term in row n, column k.
T(n,n): A000045 (Fibonacci numbers)
T(n,n-1): A010049 (second-order Fibonacci numbers)
T(n,1): 1,1,1,1,1,1,1,1,1,1,1,,...
T(n,2): 2,3,4,5,6,7,8,9,10,11,...
T(n,3): 3,5,7,9,11,13,15,17,19,...
T(n,4): A052905
Row sums: A000225
Alternating row sums: A094024 (signed)
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=x*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
1...2
1...3...3
1...4...5...5
1...5...7...10...8
First three polynomials u(n,x): 1, 1 + 2x, 1 + 3x + 3x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210552 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210553 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A000225 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A000225 *)
Table[u[n, x] /. x -> -1, {n, 1, z}] (* A094024 *)
Table[v[n, x] /. x -> -1, {n, 1, z}] (* A052551 *)
CROSSREFS
Sequence in context: A210489 A344821 A125175 * A193376 A185095 A177888
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 22 2012
STATUS
approved