OFFSET
0,2
LINKS
Alois P. Heinz, Antidiagonals n = 0..13, flattened
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437, alternative link.
EXAMPLE
Square array P_n(k) begins:
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 3, 5, 7, 9, 11, 13, 15, ...
1, 7, 17, 31, 49, 71, 97, 127, ...
1, 43, 257, 871, 2209, 4691, 8833, 15247, ...
1, 1807, 65537, 756031, 4870849, ...
1, 3263443, 4294967297, ...
1, 10650056950807, ...
MAPLE
p:= proc(n) option remember;
z-> z+ `if`(n=0, 1, p(n-1)(z)*(p(n-1)(z)-z))
end:
seq(seq(p(n)(d-n), n=0..d), d=0..8);
MATHEMATICA
p[n_] := p[n] = Function[z, z + If [n == 0, 1, p[n-1][z]*(p[n-1][z]-z)] ]; Table [Table[p[n][d-n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 14 2010
STATUS
approved