login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A001544
A nonlinear recurrence: a(n) = a(n-1)^2 - 6*a(n-1) + 6, with a(0) = 1, a(1) = 7.
(Formerly M4346 N1820)
5
1, 7, 13, 97, 8833, 77968897, 6079148431583233, 36956045653220845240164417232897, 1365749310322943329964576677590044473746108255675592519835615233
OFFSET
0,2
COMMENTS
This is the special case k=6 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1,...,n-1}. k=1 gives Sylvester's sequence A000058 and k=2 Fermat sequence A000215. - Seppo Mustonen, Sep 04 2005
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) ~ c^(2^n), where c = 1.76450357631319101484804524709844019487003729926754942591419313922841785792... . - Vaclav Kotesovec, Dec 17 2014
MATHEMATICA
Flatten[{1, RecurrenceTable[{a[1]==7, a[n]==a[n-1]*(a[n-1]-6)+6}, a, {n, 1, 10}]}] (* Vaclav Kotesovec, Dec 17 2014 *)
Join[{1}, NestList[#^2-6#+6&, 7, 10]] (* Harvey P. Dale, Nov 19 2024 *)
PROG
(PARI) a(n)=if(n<1, n==0, if(n==1, 7, n=a(n-1); n^2-6*n+6))
CROSSREFS
Column k=6 of A177888. - Alois P. Heinz, Nov 07 2012
Sequence in context: A110293 A253333 A039687 * A202152 A136720 A323468
KEYWORD
nonn,changed
STATUS
approved