OFFSET
0,2
COMMENTS
See also A110294 (compare program code).
a(2*n+1) = (a(2*n) + a(2*n+2))/2 and see A232765 for Diophantine equation that produces a sequence related to a(n). - Richard R. Forberg, Nov 30 2013
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,14,0,-1).
FORMULA
G.f.: (1+7*x-x^2-x^3) / ((1-4*x+x^2)*(1+4*x+x^2)).
From Colin Barker, Nov 01 2016: (Start)
a(n) = (3-(-1)^n)*((-3+2*sqrt(3))*(2-sqrt(3))^n + (3+2*sqrt(3))*(2+sqrt(3))^n )/(8*sqrt(3)).
a(n) = 14*a(n-2) - a(n-4) for n>3. (End)
MAPLE
seriestolist(series((1+7*x-x^2-x^3)/((1-4*x+x^2)*(1+4*x+x^2)), x=0, 25));
MATHEMATICA
CoefficientList[Series[(1+7x-x^2-x^3)/((1-4x+x^2)(1+4x+x^2)), {x, 0, 25}], x] (* Michael De Vlieger, Nov 01 2016 *)
PROG
(PARI) Vec((1+7*x-x^2-x^3)/((1-4*x+x^2)*(1+4*x+x^2)) + O(x^30)) \\ Colin Barker, Nov 01 2016
(Magma)
A001353:= func< n | Evaluate(ChebyshevSecond(n+1), 2) >;
(SageMath)
def A001353(n): return chebyshev_U(n, 2)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Jul 18 2005
STATUS
approved