login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110293
a(2*n) = A001570(n), a(2*n+1) = A011943(n+1).
3
1, 7, 13, 97, 181, 1351, 2521, 18817, 35113, 262087, 489061, 3650401, 6811741, 50843527, 94875313, 708158977, 1321442641, 9863382151, 18405321661, 137379191137, 256353060613, 1913445293767, 3570537526921, 26650854921601, 49731172316281, 371198523608647
OFFSET
0,2
COMMENTS
See also A110294 (compare program code).
a(2*n+1) = (a(2*n) + a(2*n+2))/2 and see A232765 for Diophantine equation that produces a sequence related to a(n). - Richard R. Forberg, Nov 30 2013
FORMULA
G.f.: (1+7*x-x^2-x^3) / ((1-4*x+x^2)*(1+4*x+x^2)).
From Colin Barker, Nov 01 2016: (Start)
a(n) = (3-(-1)^n)*((-3+2*sqrt(3))*(2-sqrt(3))^n + (3+2*sqrt(3))*(2+sqrt(3))^n )/(8*sqrt(3)).
a(n) = 14*a(n-2) - a(n-4) for n>3. (End)
a(n) = (1/4)*(3 - (-1)^n)*(2*A001353(n) - A001353(n-1)). - G. C. Greubel, Jan 04 2023
MAPLE
seriestolist(series((1+7*x-x^2-x^3)/((1-4*x+x^2)*(1+4*x+x^2)), x=0, 25));
MATHEMATICA
CoefficientList[Series[(1+7x-x^2-x^3)/((1-4x+x^2)(1+4x+x^2)), {x, 0, 25}], x] (* Michael De Vlieger, Nov 01 2016 *)
PROG
(PARI) Vec((1+7*x-x^2-x^3)/((1-4*x+x^2)*(1+4*x+x^2)) + O(x^30)) \\ Colin Barker, Nov 01 2016
(Magma)
A001353:= func< n | Evaluate(ChebyshevSecond(n+1), 2) >;
[(3-(-1)^n)*(2*A001353(n) - A001353(n-1))/4: n in [0..40]]; // G. C. Greubel, Jan 04 2023
(SageMath)
def A001353(n): return chebyshev_U(n, 2)
[(3-(-1)^n)*(2*A001353(n) - A001353(n-1))/4 for n in range(41)] # G. C. Greubel, Jan 04 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Jul 18 2005
STATUS
approved