OFFSET
0,2
COMMENTS
See A110293.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,14,0,-1).
FORMULA
G.f.: (1-8*x+x^2) / ((1-4*x+x^2)*(1+4*x+x^2)).
a(n) = 14*a(n-2) - a(n-4) for n>3. - Colin Barker, Nov 01 2016
a(n) = (3*(-1)^n - 1)*A001353(n+1)/2. - R. J. Mathar, Sep 11 2019
MAPLE
seriestolist(series((1-8*x+x^2)/((x^2-4*x+1)*(x^2+4*x+1)), x=0, 25));
MATHEMATICA
CoefficientList[Series[(1-8x+x^2)/((1-4x+x^2)(1+4x+x^2)), {x, 0, 24}], x] (* Michael De Vlieger, Nov 01 2016 *)
LinearRecurrence[{0, 14, 0, -1}, {1, -8, 15, -112}, 30] (* Harvey P. Dale, Dec 16 2024 *)
PROG
(PARI) Vec((1-8*x+x^2)/((1-4*x+x^2)*(1+4*x+x^2)) + O(x^30)) \\ Colin Barker, Nov 01 2016
(Magma) [(3*(-1)^n-1)*Evaluate(ChebyshevSecond(n+1), 2)/2: n in [0..40]]; // G. C. Greubel, Jan 04 2023
(SageMath) [(3*(-1)^n-1)*chebyshev_U(n, 2)/2 for n in range(41)] # G. C. Greubel, Jan 04 2023
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Jul 18 2005
STATUS
approved