login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110294
a(2*n) = A028230(n), a(2*n+1) = -A067900(n+1).
2
1, -8, 15, -112, 209, -1560, 2911, -21728, 40545, -302632, 564719, -4215120, 7865521, -58709048, 109552575, -817711552, 1525870529, -11389252680, 21252634831, -158631825968, 296011017105, -2209456310872, 4122901604639, -30773756526240, 57424611447841
OFFSET
0,2
COMMENTS
See A110293.
FORMULA
G.f.: (1-8*x+x^2) / ((1-4*x+x^2)*(1+4*x+x^2)).
a(n) = 14*a(n-2) - a(n-4) for n>3. - Colin Barker, Nov 01 2016
a(n) = (3*(-1)^n - 1)*A001353(n+1)/2. - R. J. Mathar, Sep 11 2019
MAPLE
seriestolist(series((1-8*x+x^2)/((x^2-4*x+1)*(x^2+4*x+1)), x=0, 25));
MATHEMATICA
CoefficientList[Series[(1-8x+x^2)/((1-4x+x^2)(1+4x+x^2)), {x, 0, 24}], x] (* Michael De Vlieger, Nov 01 2016 *)
LinearRecurrence[{0, 14, 0, -1}, {1, -8, 15, -112}, 30] (* Harvey P. Dale, Dec 16 2024 *)
PROG
(PARI) Vec((1-8*x+x^2)/((1-4*x+x^2)*(1+4*x+x^2)) + O(x^30)) \\ Colin Barker, Nov 01 2016
(Magma) [(3*(-1)^n-1)*Evaluate(ChebyshevSecond(n+1), 2)/2: n in [0..40]]; // G. C. Greubel, Jan 04 2023
(SageMath) [(3*(-1)^n-1)*chebyshev_U(n, 2)/2 for n in range(41)] # G. C. Greubel, Jan 04 2023
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Jul 18 2005
STATUS
approved