login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110297
8-almost primes p*q*r*s*t*u*v*w not relatively prime to p+q+r+s+t+u+v+w.
12
256, 576, 896, 960, 1296, 1344, 1440, 1600, 1944, 2112, 2160, 2240, 2496, 2916, 3024, 3136, 3168, 3264, 3360, 3520, 3600, 3648, 4000, 4160, 4416, 4704, 4752, 4860, 4896, 4928, 5040, 5400, 5440, 5568, 5616, 5824, 5952, 6000, 6080, 6561, 6624, 6804, 7056
OFFSET
1,1
COMMENTS
The primes p, q, r, s, t, u, v, w are not necessarily distinct. The 8-almost primes are A046310. The converse, A110296, is 8-almost primes p*q*r*s*t*u*v*w which are relatively prime to p+q+r+s+t+u+v+w.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
576 = 2^6 * 3^2 is an element of this sequence because its sum of prime factors is 2 + 2 + 2 + 2 + 2 + 2 + 3 + 3 = 18 = 2 * 3^2 which is a factor of 576 and not relatively prime to 576.
PROG
(PARI) list(lim)=my(v=List()); forprime(p=2, lim\128, forprime(q=2, min(p, lim\64\p), my(pq=p*q); forprime(r=2, min(lim\pq\32, q), my(pqr=pq*r); forprime(s=2, min(lim\pqr\16, r), my(pqrs=pqr*s); forprime(t=2, min(lim\pqrs\8, s), my(pqrst=pqrs*t); forprime(u=2, min(lim\pqrst\4, t), my(pqrstu=pqrst*u); forprime(w=2, min(lim\pqrstu\2, u), my(pqrstuw=pqrstu*w, n); forprime(x=2, min(lim\pqrstuw, w), n=pqrstuw*x; if(gcd(n, p+q+r+s+t+u+w+x)>1, listput(v, n)))))))))); Set(v) \\ Charles R Greathouse IV, Feb 01 2017
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jul 18 2005
EXTENSIONS
Extended by Ray Chandler, Jul 20 2005
STATUS
approved