

A110187


3almost primes p * q * r relatively prime to p+q+r.


13



12, 20, 28, 44, 45, 52, 63, 68, 75, 76, 92, 99, 116, 117, 124, 147, 148, 153, 164, 165, 171, 172, 175, 188, 207, 212, 236, 244, 245, 261, 268, 273, 275, 279, 284, 292, 316, 325, 332, 333, 345, 356, 363, 369, 385, 387, 388, 399, 404, 412, 423, 425, 428, 435
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A110188 is the converse, 3almost primes p * q * r not relatively prime to p+q+r.


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000


EXAMPLE

a(1) = 12 because 12 = 2^2 * 3, which is relatively prime to 2 + 2 + 3 = 7.
30 is not in the sequence, since 30 = 2 * 3 * 5, which is in fact divisible by 2 + 3 + 5 = 10.
92 is in the sequence since 92 = 2^2 x 23, 2 + 2 + 23 = 27 = 3^3, (92, 27) = 1.


MATHEMATICA

Select[Range[500], PrimeOmega[#]==3&&CoprimeQ[#, Total[Times @@@ FactorInteger[ #]]]&] (* Harvey P. Dale, May 15 2019 *)


PROG

(PARI) list(lim)=my(v=List()); forprime(p=2, lim\4, forprime(q=2, min(p, lim\2\p), my(pq=p*q, t); forprime(r=2, min(lim\pq, q), t=r*pq; if(gcd(t, p+q+r)==1, listput(v, t))))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017


CROSSREFS

Cf. A014612, A110188, A110227, A110228, A110229, A110230, A110231, A110232, A110289, A110290, A110296, A110297.
Sequence in context: A108027 A090767 A117227 * A096156 A210968 A107277
Adjacent sequences: A110184 A110185 A110186 * A110188 A110189 A110190


KEYWORD

easy,nonn


AUTHOR

Jonathan Vos Post, Jul 15 2005


EXTENSIONS

Extended by Ray Chandler, Jul 20 2005


STATUS

approved



