OFFSET
0,3
COMMENTS
Simple continued fraction expansion of 2*(e - 1)/(e + 1) = 2*tanh(1/2) = 1/(1 + 1/(12 + 1/(5 + 1/(28 + ...)))). - Peter Bala, Oct 01 2023
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
D. H. Lehmer, Continued fractions containing arithmetic progressions, Scripta Mathematica, 29 (1973): 17-24. [Annotated copy of offprint]
Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
FORMULA
G.f.: x*((1+3*x^2) + 4*x*(3+x^2))/(1-x^2)^2 = sum_{n>=0} a(n)*x^n.
From Carl R. White, Feb 11 2010: (Start)
a(n) = sign(n) * (2*n+1) * (3*cos(Pi*n)+5)/2.
a(2n+1) = a(2n-1) + 4, a(2n+2) = a(2n) + 16, with a(0)=0, a(1)=1, a(2)=12. (End)
a(n) = (5+3*(-1)^n)*(2*n-1)/2, with a(0)=0. Sum_{i=0..n} a(i) = A085787(A042948(n)). - Bruno Berselli, Jan 20 2012
PROG
(PARI) a(n)=polcoeff(x*(1+12*x+3*x^2+4*x^3)/(1-x^2)^2+x*O(x^n), n)
CROSSREFS
KEYWORD
nonn,cofr,easy
AUTHOR
Paul D. Hanna, Jul 14 2005
STATUS
approved