|
|
A278423
|
|
Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 41", based on the 5-celled von Neumann neighborhood.
|
|
4
|
|
|
1, 0, 1, 12, 5, 48, 7, 244, 17, 964, 17, 4036, 81, 16132, 117, 65360, 263, 261236, 337, 1047556, 1393, 4190276, 1809, 16774468, 4117, 67094336, 5407, 268419156, 22337, 1073677596, 28753, 4294924036, 66929, 17179635796, 87809, 68719215732, 356689
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Initialized with a single black (ON) cell at stage zero.
|
|
REFERENCES
|
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
|
|
LINKS
|
Robert Price, Table of n, a(n) for n = 0..126
Robert Price, Diagrams of first 20 stages
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
S. Wolfram, A New Kind of Science
Index entries for sequences related to cellular automata
Index to 2D 5-Neighbor Cellular Automata
Index to Elementary Cellular Automata
|
|
MATHEMATICA
|
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=41; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]][[i]], Range[1, i]], 2], {i, 1, stages-1}]
|
|
CROSSREFS
|
Cf. A278421, A278422, A278424.
Sequence in context: A122561 A110185 A299516 * A278661 A280614 A281041
Adjacent sequences: A278420 A278421 A278422 * A278424 A278425 A278426
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Robert Price, Nov 21 2016
|
|
STATUS
|
approved
|
|
|
|