OFFSET
0,2
COMMENTS
Equals A111284 from the 2nd term on. - R. J. Mathar, Jun 13 2008
Besides the first term, this sequence gives the denominators of the alternating series Pi/8 = 1/2 - 1/6 + 1/10 - 1/14 + 1/18 - 1/22 + .... - Mohammad K. Azarian, Oct 14 2011 [edited by Jon E. Schoenfield, Mar 07 2015]
Numbers that cannot be a side of a primitive Pythagorean triangle. - Torlach Rush, Nov 07 2019
Simple continued fraction expansion of tanh(1/2) = (e - 1)/(e + 1) = 1/(2 + 1/(6 + 1/(10 + 1/(14 + ...)))). - Peter Bala, Oct 01 2023
REFERENCES
Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
From Stefano Spezia, Dec 09 2019: (Start)
G.f.: 2*x*(1+x)/(1-x)^2.
a(n) = 2*a(n-1) - a(n-2) for n > 0.
a(n) = 4*n - 1 - (-1)^(2^n). (End)
E.g.f: 2*(1 - (1-2*x)*exp(x)). - G. C. Greubel, Dec 30 2019
MAPLE
A130827 := proc(n) if n =0 then 0 ; else 4*n-2 ; fi ; end: seq(A130827(n), n=0..120) ; # R. J. Mathar, Oct 28 2007
MATHEMATICA
2 Join[{0}, Range[1, 200, 2]] (* Michael De Vlieger, Mar 07 2015 *)
PROG
(Magma) [4*n-2*Floor((n+2) mod (n+1)):n in [0..60]]; // Vincenzo Librandi, Sep 22 2011
(PARI) vector(61, n, if(n==1, 0, 4*(n-1) -2) ) \\ G. C. Greubel, Dec 30 2019
(Sage) [0]+[4*n-2 for n in (1..60)] # G. C. Greubel, Dec 30 2019
(GAP) Concatenation([0], List([1..60], n-> 4*n-2 )); # G. C. Greubel, Dec 30 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jul 17 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 28 2007
STATUS
approved