|
|
A130823
|
|
Each odd number appears thrice.
|
|
9
|
|
|
1, 1, 1, 3, 3, 3, 5, 5, 5, 7, 7, 7, 9, 9, 9, 11, 11, 11, 13, 13, 13, 15, 15, 15, 17, 17, 17, 19, 19, 19, 21, 21, 21, 23, 23, 23, 25, 25, 25, 27, 27, 27, 29, 29, 29, 31, 31, 31, 33, 33, 33, 35, 35, 35, 37, 37, 37, 39, 39, 39, 41, 41, 41, 43, 43, 43, 45, 45, 45, 47, 47, 47, 49, 49
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
Partial sums of 1,0,0,2,0,0,2,0,0,2,0,0,... . - Emeric Deutsch, Jul 23 2007
|
|
LINKS
|
|
|
FORMULA
|
Euler transform of length 6 sequence [1, 0, 2, 0, 0, -1].
a(n + 3) = a(n) + 2.
a(n) = - a(1-n) for all n in Z. (End)
a(n) = -1 + Sum_{k=1..n} ((2/9)*((k mod 3)+4*((k+1) mod 3)-2*((k+2) mod 3))). - Paolo P. Lava, Aug 29 2007, Aug 22 2009
a(n) = floor((n-1)*(n+1)/3) - floor((n-2)*n/3). - Bruno Berselli, Mar 03 2017
|
|
EXAMPLE
|
G.f. = x + x^2 + x^3 + 3*x^4 + 3*x^5 + 3*x^6 + 5*x^7 + 5*x^8 + 5*x^9 + 7*x^10 + ...
|
|
MAPLE
|
G:=x*(1+x^3)/((1-x)*(1-x^3)): Gser:=series(G, x=0, 82): seq(coeff(Gser, x, n), n= 1..75); # Emeric Deutsch, Jul 23 2007
|
|
MATHEMATICA
|
Flatten[Table[n, {n, 1, 49, 2}, {3}]] (* or *) LinearRecurrence[{1, 0, 1, -1}, {1, 1, 1, 3}, 100] (* or *) Accumulate[PadRight[{1}, 100, {2, 0, 0}]] (* Harvey P. Dale, Apr 20 2015 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|