OFFSET
1,1
COMMENTS
There exist values of n for which k^n + n is never prime (cf. A072883). Do there exist values of n for which k^n + n is never semiprime?
Compare with A361803, the equivalent sequence for k^n - n, where a generalized factorization (effectively a polynomial factorization) into 3 factors is given to show that k^n - n is never semiprime for certain n. - Peter Munn, Jun 19 2023
LINKS
Sean A. Irvine, Table of n, a(n) for n = 1..100.
EXAMPLE
a(1)=3 because 1^1 + 1 = 2 (prime) and 2^1 + 1 = 3 (prime) but 3^1 + 1 = 4 = 2*2 (semiprime).
a(2)=2 because 1^2 + 2 = 3 (prime) but 2^2 + 2 = 6 = 2*3 (semiprime).
a(3)=1 because 1^3 + 3 = 4 = 2*2 (semiprime).
a(4)=3 because 1^4 + 4 = 5 (prime) and 2^4 + 4 = 20 = 2^2 * 5 but 3^4 + 4 = 85 = 5*17 (semiprime).
a(5)=1 because 1^5 + 5 = 6 = 2*3 (semiprime).
PROG
(PARI) a(n) = my(k=1); while (bigomega(k^n+n)!=2, k++); k; \\ Michel Marcus, Jun 19 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Aug 18 2007
EXTENSIONS
More terms from Sean A. Irvine, Oct 20 2009
STATUS
approved