login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353748
a(n) = phi(n) - A064989(n), where phi is Euler totient function, and A064989 shifts the prime factorization one step towards lower primes.
4
0, 0, 0, 1, 1, 0, 1, 3, 2, 1, 3, 2, 1, 1, 2, 7, 3, 2, 1, 5, 2, 3, 3, 6, 11, 1, 10, 7, 5, 2, 1, 15, 6, 3, 9, 8, 5, 1, 2, 13, 3, 2, 1, 13, 12, 3, 3, 14, 17, 11, 6, 13, 5, 10, 19, 19, 2, 5, 5, 10, 1, 1, 16, 31, 15, 6, 5, 19, 6, 9, 3, 20, 1, 5, 22, 19, 25, 2, 5, 29, 38, 3, 3, 14, 25, 1, 10, 33, 5, 12, 17, 25, 2, 3, 21
OFFSET
1,8
FORMULA
a(n) = A000010(n) - A064989(n).
For n >= 0, a(4n+2) = a(2n+1).
For n > 1, a(n) = A140434(n) - A353747(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3/Pi^2 - (1/2) * Product_{p prime} ((p^2-p)/(p^2-q(p))) = 0.0832596219... , where q(p) = prevprime(p) (A151799) if p > 2 and q(2) = 1. - Amiram Eldar, Dec 21 2023
MATHEMATICA
f1[p_, e_] := (p - 1)*p^(e - 1); f2[p_, e_] := If[p == 2, 1, NextPrime[p, -1]^e]; a[1] = 0; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; Array[a, 100] (* Amiram Eldar, May 07 2022 *)
PROG
(PARI)
A064989(n) = { my(f=factor(n>>valuation(n, 2))); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
A353748(n) = (eulerphi(n)-A064989(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 06 2022
STATUS
approved