login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A353745
Number of runs in the ordered prime signature of n.
2
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1
OFFSET
1,12
COMMENTS
First differs from A071625 at a(90) = 3.
First differs from A331592 at a(90) = 3.
A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.
EXAMPLE
The prime indices of 630 are {1,2,2,3,4}, with multiplicities {1,2,1,1}, with runs {{1},{2},{1,1}}, so a(630) = 3.
MATHEMATICA
Table[Length[Split[Last/@If[n==1, {}, FactorInteger[n]]]], {n, 100}]
PROG
(PARI)
pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1, #f~, while(f[i, 2], listput(runs, primepi(f[i, 1])); f[i, 2]--)); (runs); };
runlengths(lista) = if(!#lista, lista, if(1==#lista, List([1]), my(runs=List([]), rl=1); for(i=1, #lista, if((i < #lista) && (lista[i]==lista[i+1]), rl++, listput(runs, rl); rl=1)); (runs)));
A353745(n) = #runlengths(runlengths(pis_to_runs(n))); \\ Antti Karttunen, Jan 20 2025
CROSSREFS
Positions of first appearances are A354233.
A001222 counts prime factors, distinct A001221.
A005361 gives product of prime signature, firsts A353500/A085629.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A182850/A323014 give frequency depth, counted by A225485/A325280.
Cf. also A329747.
Sequence in context: A003652 A071625 A331592 * A309004 A355382 A304779
KEYWORD
nonn,changed
AUTHOR
Gus Wiseman, May 20 2022
STATUS
approved