login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304779
The "rootless" zeta function. Dirichlet inverse of the function defined by r(n) = (-1)^Omega(n) if n is 1 or not a perfect power and r(n) = 0 otherwise.
9
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 7, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 2, 2, 5, 1, 1, 1, 2, 1
OFFSET
1,12
COMMENTS
Omega(n) = A001222(n) is the number of prime factors of n counted with multiplicity.
First occurrence of k: 1, 12, 48, 60, 36, 3072, 72, 420, 240, 786432, 3145728, 144, 216, ..., . - Robert G. Wilson v, Jul 22 2018
Records: 1, 2, 5, 7, 12, 13, 15, 18, 26, 37, 38, 57, 60, 67, 81, 96, 142, 165, 199, 221, 234, ..., . - Robert G. Wilson v, Jul 22 2018
LINKS
FORMULA
a(1) = 1 and a(n > 1) = -Sum_{d|n, d not a perfect power} (-1)^Omega(d) * a(n/d).
MATHEMATICA
a[n_]:=a[n]=If[n==1, 1, -Sum[(-1)^PrimeOmega[d]*a[n/d], {d, Select[Rest[Divisors[n]], GCD@@FactorInteger[#][[All, 2]]==1&]}]];
Array[a, 100]
PROG
(PARI) A304779(n) = if(1==n, 1, -sumdiv(n, d, if((d>1)&&!ispower(d), ((-1)^bigomega(d))*A304779(n/d), 0))); \\ Antti Karttunen, Jul 22 2018
CROSSREFS
Positions of entries greater than 1 appear to be A126706.
Sequence in context: A353745 A309004 A355382 * A361691 A334933 A371451
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 18 2018
EXTENSIONS
More terms from Antti Karttunen, Jul 22 2018
STATUS
approved