login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304780
Consider a triangle whose first row is {1,2} and, for n > 1, has as its n-th row the integers k through 2k where k is the sum of the numbers in the (n-1)th row. Then a(n) is the first number in the n-th row.
0
1, 3, 18, 513, 395523, 234658258578, 82596747478641253260993, 10233334041075645341729789249315281196742910563, 157081688394356396673208173772909833928515988895188885472258972148661958252271815996039831298
OFFSET
1,2
FORMULA
a(1) = 1, a(n) = (3*a(n-1)*(a(n-1) + 1))/2 for n > 1.
a(n) ~ (2/3) * c^(2^n), where c = 1.515006464529590220430714781603262955960312205695360166833... - Vaclav Kotesovec, Jul 23 2018
EXAMPLE
Triangle begins:
1, 2; (row sum = 3)
3, 4, 5, 6; (row sum = 18)
18, 19, 20, 21, ... 33, 34, 35, 36; (row sum = 513)
513, 514, 515, 516, ..., 1023, 1024, 1025, 1026;
...
MATHEMATICA
RecurrenceTable[{a[1] == 1, a[n] == (3*a[n-1]*(a[n-1] + 1))/2}, a, {n, 1, 10}] (* Vaclav Kotesovec, Jul 23 2018 *)
Nest[Append[#, Range[#, 2 #] &@ Total@ Last@ #] &, {{1, 2}}, 3] // Flatten (* Michael De Vlieger, Jul 26 2018 *)
PROG
(PARI) a(n) = if (n==1, 1, (3*a(n - 1)*(a(n - 1) + 1))/2); \\ Michel Marcus, May 24 2018
CROSSREFS
Cf. A000217.
Sequence in context: A118704 A132514 A188801 * A265468 A365292 A070953
KEYWORD
nonn
AUTHOR
Nathaniel J. Strout, May 18 2018
STATUS
approved