login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287556
Start with 0 and repeatedly substitute 0->0132, 1->1320, 2->3201, 3->2013.
9
0, 1, 3, 2, 1, 3, 2, 0, 2, 0, 1, 3, 3, 2, 0, 1, 1, 3, 2, 0, 2, 0, 1, 3, 3, 2, 0, 1, 0, 1, 3, 2, 3, 2, 0, 1, 0, 1, 3, 2, 1, 3, 2, 0, 2, 0, 1, 3, 2, 0, 1, 3, 3, 2, 0, 1, 0, 1, 3, 2, 1, 3, 2, 0, 1, 3, 2, 0, 2, 0, 1, 3, 3, 2, 0, 1, 0, 1, 3, 2, 3, 2, 0, 1, 0, 1
OFFSET
1,3
COMMENTS
This is the fixed point of the morphism 0->0132, 1->1320, 2->3201, 3->2013 starting with 0. Let t be the (nonperiodic) sequence of positions of 0, and likewise, u for 1, v for 2, and w for 3; then t(n)/n -> 4, u(n)/n -> 4, v(n)/n -> 4, w(n)/n -> 4. Also, t(n) + u(n) + v(n) + w(n) = 16*n - 6 for n >= 1.
In the following guide to related sequences, column 1 indexes fixed points on {0,1,2,3}, and column 2 indicates position sequences of 0, 1, 2, 3. Those sequences therefore comprise a 4-way splitting of the positive integers.
Fixed points of morphisms: Position sequences:
A053839: 0->0123, 1->1230, 2->2301, 3->3012 A287552-A287555
A287556: 0->0132, 1->1320, 2->3201, 3->2013 A287557-A287560
A287561: 0->0213, 1->2130, 2->1302, 3->3021 A287562-A287565
A287566: 0->0231, 1->2310, 2->3102, 3->1023 A287567-A287570
A287571: 0->0312, 1->3120, 2->1203, 3->2031 A287572-A287575
A287576: 0->0321, 1->3210, 2->2103, 3->1032 A287577-A287580
EXAMPLE
First three iterations of the morphism:
0132
0132132020133201
0132132020133201132020133201013232010132132020132013320101321320
MATHEMATICA
s = Nest[Flatten[# /. {0 -> {0, 1, 3, 2}, 1 -> {1, 3, 2, 0}, 2 -> {3, 2, 0, 1}, 3 -> {2, 0, 1, 3}}] &, {0}, 9]; (* A287556 *)
Flatten[Position[s, 0]]; (* A287557 *)
Flatten[Position[s, 1]]; (* A287558 *)
Flatten[Position[s, 2]]; (* A287559 *)
Flatten[Position[s, 3]]; (* A287560 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 31 2017
STATUS
approved