|
|
A287566
|
|
Start with 0 and repeatedly substitute 0->0231, 1->2310, 2->3102, 3->1023.
|
|
6
|
|
|
0, 2, 3, 1, 3, 1, 0, 2, 1, 0, 2, 3, 2, 3, 1, 0, 1, 0, 2, 3, 2, 3, 1, 0, 0, 2, 3, 1, 3, 1, 0, 2, 2, 3, 1, 0, 0, 2, 3, 1, 3, 1, 0, 2, 1, 0, 2, 3, 3, 1, 0, 2, 1, 0, 2, 3, 2, 3, 1, 0, 0, 2, 3, 1, 2, 3, 1, 0, 0, 2, 3, 1, 3, 1, 0, 2, 1, 0, 2, 3, 3, 1, 0, 2, 1, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
This is the fixed point of the morphism 0->0231, 1->2310, 2->3102, 3->1023 starting with 0. Let t be the (nonperiodic) sequence of positions of 0, and likewise, u for 1, v for 2, and w for 3; then t(n)/n -> 4, u(n)/n -> 4, v(n)/n -> 4, w(n)/n -> 4. Also, t(n) + u(n) + v(n) + w(n) = 16*n - 6 for n >= 1. See A287556 for a guide to related sequences.
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
First three iterations of the morphism:
0231
0231310210232310
0231310210232310102323100231310223100231310210233102102323100231
|
|
MATHEMATICA
|
s = Nest[Flatten[# /. {0 -> {0, 2, 3, 1}, 1 -> {2, 3, 2, 0}, 2 -> {3, 1, 0, 2}, 3 -> {1, 0, 2, 3}}] &, {0}, 9]; (* A287566 *)
Flatten[Position[s, 0]]; (* A287567 *)
Flatten[Position[s, 1]]; (* A287568 *)
Flatten[Position[s, 2]]; (* A287569 *)
Flatten[Position[s, 3]]; (* A287570 *)
Flatten[SubstitutionSystem[{0->{0, 2, 3, 1}, 1->{2, 3, 1, 0}, 2->{3, 1, 0, 2}, 3->{1, 0, 2, 3}}, {0}, {4}]] (* Harvey P. Dale, Jul 20 2023 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|