login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Start with 0 and repeatedly substitute 0->0231, 1->2310, 2->3102, 3->1023.
6

%I #6 Jul 20 2023 17:56:33

%S 0,2,3,1,3,1,0,2,1,0,2,3,2,3,1,0,1,0,2,3,2,3,1,0,0,2,3,1,3,1,0,2,2,3,

%T 1,0,0,2,3,1,3,1,0,2,1,0,2,3,3,1,0,2,1,0,2,3,2,3,1,0,0,2,3,1,2,3,1,0,

%U 0,2,3,1,3,1,0,2,1,0,2,3,3,1,0,2,1,0

%N Start with 0 and repeatedly substitute 0->0231, 1->2310, 2->3102, 3->1023.

%C This is the fixed point of the morphism 0->0231, 1->2310, 2->3102, 3->1023 starting with 0. Let t be the (nonperiodic) sequence of positions of 0, and likewise, u for 1, v for 2, and w for 3; then t(n)/n -> 4, u(n)/n -> 4, v(n)/n -> 4, w(n)/n -> 4. Also, t(n) + u(n) + v(n) + w(n) = 16*n - 6 for n >= 1. See A287556 for a guide to related sequences.

%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>

%F a(n) = 4n - A287568(n) for n >= 1.

%e First three iterations of the morphism:

%e 0231

%e 0231310210232310

%e 0231310210232310102323100231310223100231310210233102102323100231

%t s = Nest[Flatten[# /. {0 -> {0, 2, 3, 1}, 1 -> {2, 3, 2, 0}, 2 -> {3, 1, 0, 2}, 3 -> {1, 0, 2, 3}}] &, {0}, 9]; (* A287566 *)

%t Flatten[Position[s, 0]]; (* A287567 *)

%t Flatten[Position[s, 1]]; (* A287568 *)

%t Flatten[Position[s, 2]]; (* A287569 *)

%t Flatten[Position[s, 3]]; (* A287570 *)

%t Flatten[SubstitutionSystem[{0->{0,2,3,1},1->{2,3,1,0},2->{3,1,0,2},3->{1,0,2,3}},{0},{4}]] (* _Harvey P. Dale_, Jul 20 2023 *)

%Y Cf. A287567, A287568, A287569, A287570.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, May 31 2017