The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A287576 Start with 0 and repeatedly substitute 0->0321, 1->3210, 2->2103, 3->1032. 6
 0, 3, 2, 1, 1, 0, 3, 2, 2, 1, 0, 3, 3, 2, 1, 0, 3, 2, 1, 0, 0, 3, 2, 1, 1, 0, 3, 2, 2, 1, 0, 3, 2, 1, 0, 3, 3, 2, 1, 0, 0, 3, 2, 1, 1, 0, 3, 2, 1, 0, 3, 2, 2, 1, 0, 3, 3, 2, 1, 0, 0, 3, 2, 1, 1, 0, 3, 2, 2, 1, 0, 3, 3, 2, 1, 0, 0, 3, 2, 1, 0, 3, 2, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This is the fixed point of the morphism 0->0231, 1->2310, 2->3102, 3->1023 starting with 0.  Let t be the (nonperiodic) sequence of positions of 0, and likewise, u for 1, v for 2, and w for 3; then t(n)/n -> 4, u(n)/n -> 4, v(n)/n -> 4,  w(n)/n -> 4.   Also, t(n) + u(n) + v(n) + w(n) = 16*n - 6 for n >= 1.  See A287556 for a guide to related sequences. LINKS Clark Kimberling, Table of n, a(n) for n = 1..20000 FORMULA a(n) = 4n - A287578(n) for n >= 1. EXAMPLE First three iterations of the morphism: 0321 0321103221033210 0321103221033210321003211032210321033210032110321032210332100321 MATHEMATICA s = Nest[Flatten[# /. {0 -> {0, 3, 2, 1}, 1 -> {3, 2, 1, 0}, 2 -> {2, 1, 0, 3}, 3 -> {1, 0, 3, 2}}] &, {0}, 9];   (* A287576 *) Flatten[Position[s, 0]]; (* A287577 *) Flatten[Position[s, 1]]; (* A287578 *) Flatten[Position[s, 2]]; (* A287579 *) Flatten[Position[s, 3]]; (* A287580 *) CROSSREFS Cf. A287577, A287578, A287579, A287580. Sequence in context: A202551 A129267 A199324 * A035103 A155033 A283417 Adjacent sequences:  A287573 A287574 A287575 * A287577 A287578 A287579 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jun 01 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 5 17:56 EDT 2021. Contains 343572 sequences. (Running on oeis4.)