login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110189
Triangle read by rows: T(n,k) (0<=k<=n) is the number of Schroeder paths of length 2n, having k (1,0)-steps on the lines y=0 and y=1 (a Schroeder path of length 2n is a path from (0,0) to (2n,0), consisting of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis).
1
1, 1, 1, 2, 3, 1, 6, 9, 6, 1, 22, 32, 25, 10, 1, 90, 128, 105, 55, 15, 1, 394, 552, 462, 271, 105, 21, 1, 1806, 2504, 2118, 1317, 602, 182, 28, 1, 8558, 11776, 10026, 6456, 3235, 1204, 294, 36, 1, 41586, 56896, 48658, 32068, 17019, 7149, 2226, 450, 45, 1, 206098
OFFSET
0,4
COMMENTS
Row sums are the large Schroeder numbers (A006318). First column yields the large Schroeder numbers (A006318). sum(k*T(n,k),k=0..n)=A110190(n).
FORMULA
G.f.=(1-tz-zR)/[(1-tz)^2-z-z(1-tz)R], where R=.1+zR+zR^2=[1-z-sqrt(1-6z+z^2)]/(2z) is the g.f. of the large Schroeder numbers (A006318).
EXAMPLE
T(3,2)=6 because we have HHUD, HUHD, HUDH, UDHH, UHDH and UHHD.
Triangle starts:
1;
1,1;
2,3,1;
6,9,6,1;
22,32,25,10,1;
MAPLE
R:=(1-z-sqrt(1-6*z+z^2))/2/z: G:=(1-t*z-z*R)/((1-t*z)^2-z-z*(1-t*z)*R): Gser:=simplify(series(G, z=0, 13)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 10 do seq(coeff(t*P[n], t^k), k=1..n+1) od; # yields sequence in triangular form
CROSSREFS
Sequence in context: A198427 A289905 A086211 * A187914 A321625 A132372
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jul 15 2005
STATUS
approved