OFFSET
0,4
COMMENTS
FORMULA
G.f.=(1-tz-zR)/[(1-tz)^2-z-z(1-tz)R], where R=.1+zR+zR^2=[1-z-sqrt(1-6z+z^2)]/(2z) is the g.f. of the large Schroeder numbers (A006318).
EXAMPLE
T(3,2)=6 because we have HHUD, HUHD, HUDH, UDHH, UHDH and UHHD.
Triangle starts:
1;
1,1;
2,3,1;
6,9,6,1;
22,32,25,10,1;
MAPLE
R:=(1-z-sqrt(1-6*z+z^2))/2/z: G:=(1-t*z-z*R)/((1-t*z)^2-z-z*(1-t*z)*R): Gser:=simplify(series(G, z=0, 13)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 10 do seq(coeff(t*P[n], t^k), k=1..n+1) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jul 15 2005
STATUS
approved