login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001547
a(n) = (7*n+1)*(7*n+2)*(7*n+4).
1
8, 792, 4320, 12650, 27840, 51948, 87032, 135150, 198360, 278720, 378288, 499122, 643280, 812820, 1009800, 1236278, 1494312, 1785960, 2113280, 2478330, 2883168, 3329852, 3820440, 4356990, 4941560, 5576208, 6262992, 7003970, 7801200, 8656740, 9572648
OFFSET
0,1
FORMULA
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=8, a(1)=792, a(2)=4320, a(3)=12650. - Harvey P. Dale, Jan 12 2013
From G. C. Greubel, May 19 2019: (Start)
G.f.: 2*(4 + 380*x + 600*x^2 + 45*x^3)/(1 - x)^4.
E.g.f.: (8 + 784*x + 1372*x^2 + 343*x^3)*exp(x). (End)
MATHEMATICA
Times@@@Table[7n+{1, 2, 4}, {n, 0, 30}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {8, 792, 4320, 12650}, 40] (* Harvey P. Dale, Jan 12 2013 *)
PROG
(PARI) a(n) = (7*n+1)*(7*n+2)*(7*n+4); \\ G. C. Greubel, May 19 2019
(Magma) [(7*n+1)*(7*n+2)*(7*n+4): n in [0..30]]; // G. C. Greubel, May 19 2019
(Sage) [(7*n+1)*(7*n+2)*(7*n+4) for n in (0..30)] # G. C. Greubel, May 19 2019
(GAP) List([0..30], n-> (7*n+1)*(7*n+2)*(7*n+4)) # G. C. Greubel, May 19 2019
CROSSREFS
Sequence in context: A260032 A332178 A204464 * A168310 A220186 A054945
KEYWORD
nonn,easy
STATUS
approved