login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220186
Numbers n >= 0 such that n^2 + n*(n+1)/2 is a square.
4
0, 8, 800, 78408, 7683200, 752875208, 73774087200, 7229107670408, 708378777612800, 69413891098384008, 6801852948864020000, 666512175097575576008, 65311391306613542428800, 6399849835873029582446408, 627119972524250285537319200
OFFSET
1,2
COMMENTS
Equivalently, numbers n such that triangular(2*n) - triangular(n) is a square.
FORMULA
a(n) = A098308(2*n-2).
a(1) = 0, a(2) = 8, a(3) = 800 and a(n) = 99*a(n-1)-99*a(n-2)+a(n-3) for n>3. - Giovanni Resta, Apr 12 2013
G.f.: -8*x^2*(x+1) / ((x-1)*(x^2-98*x+1)). - Colin Barker, May 31 2013
a(n) = (49+20*sqrt(6))^(-n)*(49+20*sqrt(6)-2*(49+20*sqrt(6))^n+(49-20*sqrt(6))*(49+20*sqrt(6))^(2*n))/12. - Colin Barker, Mar 05 2016
a(n) = 8*A108741(n). - R. J. Mathar, Feb 19 2017
MATHEMATICA
a[n_]:=Floor[(1/12)*(49 + 20*Sqrt[6])^n]; Table[a[n], {n, 0, 10}] (* Giovanni Resta, Apr 12 2013 *)
LinearRecurrence[{99, -99, 1}, {0, 8, 800}, 20] (* Harvey P. Dale, Nov 01 2022 *)
PROG
(C)
#include <stdio.h>
#include <math.h>
int main() {
unsigned long long a, i, t;
for (i=0; i < (1L<<32); ++i) {
a = (i*i) + ((i+1)*i/2);
t = sqrt(a);
if (a == t*t) printf("%llu\n", i);
}
return 0;
}
(PARI) lista(nn) = for(n=0, nn, if(issquare(n^2 + n*(n+1)/2), print1(n, ", "))); \\ Altug Alkan, Mar 05 2016
CROSSREFS
Cf. A005449 (n^2 + n(n+1)/2).
Cf. A011916 (numbers n such that n^2 + n(n+1)/2 is a triangular number).
Cf. A014105 (n^2 + n(n+1)).
Cf. A084703 (numbers n such that n^2 + n(n+1) is a square).
Cf. A220185 (numbers n such that n^2 + n(n+1) is an oblong number).
Sequence in context: A204464 A001547 A168310 * A054945 A158817 A159707
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, Apr 12 2013
STATUS
approved