login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159707 Numerator of Hermite(n, 4/21). 1
1, 8, -818, -20656, 1999180, 88867808, -8105441336, -535131970624, 45761939043472, 4141986697070720, -330122378550514976, -39173301696567870208, 2889460903124553335488, 437725912381470764965376, -29628751416174362424982400, -5642069577415795905192322048 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

DLMF Digital library of mathematical functions, Table 18.9.1 for H_n(x)

FORMULA

D-finite with recurrence a(n) - 8*a(n-1) + 882*(n-1)*a(n-2) = 0. [DLMF] - R. J. Mathar, Feb 17 2014

From G. C. Greubel, May 22 2018: (Start)

a(n) = 21^n * Hermite(n,4/21).

E.g.f.: exp(8*x-441*x^2).

a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/21)^(n-2k)/(k!*(n-2k)!). (End)

EXAMPLE

Numerator of 1, 8/21, -818/441, -20656/9261, 1999180/194481, 88867808/4084101, ...

MAPLE

A159707 := proc(n)

        orthopoly[H](n, 4/21) ;

        numer(%) ;

end proc: # R. J. Mathar, Feb 17 2014

MATHEMATICA

Numerator[Table[HermiteH[n, 4/21], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2011 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 4/21)) \\ Charles R Greathouse IV, Jan 29 2016

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(8/21)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, May 22 2018

CROSSREFS

Cf. A009965 (denominators).

Sequence in context: A220186 A054945 A158817 * A097818 A262379 A175411

Adjacent sequences:  A159704 A159705 A159706 * A159708 A159709 A159710

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 12:17 EDT 2021. Contains 345100 sequences. (Running on oeis4.)