login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159706
Numerator of Hermite(n, 2/21).
1
1, 4, -866, -10520, 2249356, 46111984, -9735212024, -282965467424, 58973337166480, 2232497686809664, -459200359680279584, -21527431036382354816, 4369052165472543104704, 245322538750961015791360, -49114261974304335175370624, -3225699756394083963693195776
OFFSET
0,2
LINKS
DLMF Digital library of mathematical functions, Table 18.9.1 for H_n(x)
FORMULA
D-finite with recurrence a(n) - 4*a(n-1) + 882*(n-1)*a(n-2) = 0. [DLMF] - R. J. Mathar, Feb 17 2014
From G. C. Greubel, May 22 2018: (Start)
a(n) = 21^n * Hermite(n,2/21).
E.g.f.: exp(4*x-441*x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/21)^(n-2k)/(k!*(n-2k)!). (End)
EXAMPLE
Numerator of 1, 4/21, -866/441, -10520/9261, 2249356/194481, 46111984/4084101, ...
MAPLE
A159706 := proc(n)
orthopoly[H](n, 2/21) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 17 2014
MATHEMATICA
Numerator[Table[HermiteH[n, 2/21], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2011 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 2/21)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(4/21)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, May 22 2018
CROSSREFS
Cf. A009965 (denominators).
Sequence in context: A272167 A255269 A113896 * A349077 A188978 A333502
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved