login
A159705
Numerator of Hermite(n, 1/21).
1
1, 2, -878, -5284, 2312620, 23267192, -10152119816, -143434219696, 62392319304592, 1136856492784160, -492996517654282976, -11013067301664857152, 4761026079678523718848, 126084356480177895534464, -54337756316633597169242240, -1665565146450503848398045952
OFFSET
0,2
LINKS
DLMF Digital library of mathematical functions, Table 18.9.1 for H_n(x)
FORMULA
D-finite with recurrence a(n) - 2*a(n-1) + 882*(n-1)*a(n-2) = 0. [DLMF] - R. J. Mathar, Feb 17 2014
From G. C. Greubel, May 22 2018: (Start)
a(n) = 21^n * Hermite(n,1/21).
E.g.f.: exp(2*x-441*x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/21)^(n-2k)/(k!*(n-2k)!). (End)
EXAMPLE
Numerator of 1, 2/21, -878/441, -5284/9261, 2312620/194481, 23267192/4084101, ...
MAPLE
A159705 := proc(n)
orthopoly[H](n, 1/21) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 17 2014
MATHEMATICA
Numerator[Table[HermiteH[n, 1/21], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2011 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 1/21)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(2/21)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, May 21 2018
CROSSREFS
Cf. A009965 (denominators).
Sequence in context: A230569 A239149 A050247 * A229678 A261528 A265881
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved