login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260032
Number of perfect matchings in graph P_{2n} X P_{2n} with a monomer on each corner.
1
1, 8, 784, 913952, 12119367744, 1773206059548800, 2808001509386950713600, 47534638766423741578738188800, 8530835766072904609739799813424153600, 16137081911409285302469685272022812457875802112, 320397648203287990193211938297925486964232264783587250176
OFFSET
1,2
LINKS
MAPLE
with(LinearAlgebra):
a:= proc(n) option remember; local d, i, j, t, m, M;
d:= 2*n; m:= d^2-4;
M:= Matrix(m, shape=skewsymmetric);
for i to d-3 do M[i+1, i]:=1 od;
for i to d-2 do M[i, i+d-1]:=1 od;
for i from m-d+3 to m-1 do M[i, i+1]:=1 od;
for i from m-d+3 to m do M[i-d+1, i]:=1 od;
for i from d-1 to m-2*d+2 do M[i, i+d]:=1 od;
for i to d-2 do for j to d-1 do
t:=d*i+j-2; M[t, t+1]:= `if`(irem(i, 2)=1, 1, -1);
od od;
isqrt(Determinant(M))
end:
seq(a(n), n=1..11); # Alois P. Heinz, Mar 10 2016
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Module[{d, i, j, t, m, M}, d = 2*n; m = d^2 - 4; M = Array[0&, {m, m}];
For[i = 1, i <= d - 3, i++, M[[i + 1, i]] = 1];
For[i = 1, i <= d - 2, i++, M[[i, i + d - 1]] = 1];
For[i = m - d + 3, i <= m - 1, i++, M[[i, i + 1]] = 1];
For[i = m - d + 3, i <= m, i++, M[[i - d + 1, i]] = 1];
For[i = d - 1, i <= m - 2*d + 2, i++, M[[i, i + d]] = 1];
For[i = 1, i <= d - 2, i++,
For[j = 1, j <= d - 1, j++, t = d*i + j - 2; M[[t, t + 1]] = If[Mod[i, 2] == 1, 1, -1]]]; M = M - Transpose[M]; Sqrt[Det[M]]];
Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 11}] (* Jean-François Alcover, Nov 11 2017, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A268148 A145415 A371595 * A332178 A204464 A001547
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 19 2015
EXTENSIONS
a(6)-a(10) from Andrew Howroyd, Nov 15 2015
Typo in a(5) corrected and a(11) added by Alois P. Heinz, Mar 07 2016
STATUS
approved