login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A332178
a(n) = 7*(10^(2n+1)-1)/9 + 10^n.
8
8, 787, 77877, 7778777, 777787777, 77777877777, 7777778777777, 777777787777777, 77777777877777777, 7777777778777777777, 777777777787777777777, 77777777777877777777777, 7777777777778777777777777, 777777777777787777777777777, 77777777777777877777777777777, 7777777777777778777777777777777
OFFSET
0,1
COMMENTS
See A183182 = {1, 3, 39, 54, 168, 240, ...} for the indices of primes.
FORMULA
a(n) = 7*A138148(n) + 8*10^n.
G.f.: (8 - 101*x - 600*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332178 := n -> 7*(10^(n*2+1)-1)/9 + 10^n;
MATHEMATICA
Array[7 (10^(2 # + 1) - 1)/9 + 10^# &, 15, 0]
PROG
(PARI) apply( {A332178(n)=10^(n*2+1)\9*7+10^n}, [0..15])
(Python) def A332178(n): return 10**(n*2+1)//9*7+10^n
CROSSREFS
Cf. A138148 (cyclops numbers with binary digits only).
Cf. (A077793-1)/2 = A183182: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002281 (7*R_n), A011557 (10^n).
Cf. A332171 .. A332179 (variants with different middle digit 1, ..., 9).
Sequence in context: A145415 A371595 A260032 * A204464 A001547 A168310
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 08 2020
STATUS
approved