login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332175
a(n) = 7*(10^(2n+1)-1)/9 - 2*10^n.
1
5, 757, 77577, 7775777, 777757777, 77777577777, 7777775777777, 777777757777777, 77777777577777777, 7777777775777777777, 777777777757777777777, 77777777777577777777777, 7777777777775777777777777, 777777777777757777777777777, 77777777777777577777777777777, 7777777777777775777777777777777
OFFSET
0,1
COMMENTS
See A183180 = {0, 1, 7, 13, 58, 129, 253, ...} for the indices of primes.
FORMULA
a(n) = 7*A138148(n) + 5*10^n.
G.f.: (5 + 202*x - 900*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2.
E.g.f.: (1/9)*exp(x)*(70*exp(99*x) - 18*exp(9*x) - 7). - Stefano Spezia, Feb 08 2020
MAPLE
A332175 := n -> 7*(10^(n*2+1)-1)/9 - 2*10^n;
MATHEMATICA
Array[7 (10^(2 # + 1) - 1)/9 - 2*10^# &, 15, 0]
PROG
(PARI) apply( {A332175(n)=10^(n*2+1)\9*7-2*10^n}, [0..15])
(Python) def A332175(n): return 10**(n*2+1)//9*7-2*10^n
CROSSREFS
Cf. (A077785-1)/2 = A183180: indices of primes.
Cf. A138148 (cyclops numbers with binary digits only).
Cf. A002275 (repunits R_n = (10^n-1)/9), A002281 (7*R_n), A011557 (10^n).
Cf. A332171 .. A332179 (variants with different middle digit 1, ..., 9).
Sequence in context: A157281 A171269 A172890 * A195612 A051304 A297921
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 08 2020
STATUS
approved