login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001545 a(n) = (5n+1)*(5n+4). 2
4, 54, 154, 304, 504, 754, 1054, 1404, 1804, 2254, 2754, 3304, 3904, 4554, 5254, 6004, 6804, 7654, 8554, 9504, 10504, 11554, 12654, 13804, 15004, 16254, 17554, 18904, 20304, 21754, 23254, 24804, 26404, 28054, 29754, 31504, 33304, 35154, 37054, 39004, 41004 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
LINKS
FORMULA
Equals 50 * A000217(n) + 4.
a(n) = 50*n + a(n-1) with a(0)=4. - Vincenzo Librandi, Jan 20 2011
From Amiram Eldar, Jan 23 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(1 + 2/sqrt(5))*Pi/15 = 0.2882687....
Sum_{n>=0} (-1)^n/a(n) = 2*log(phi)/(3*sqrt(5)) + 2*log(2)/15, where phi is the golden ratio (A001622).
Product_{n>=0} (1 - 1/a(n)) = sqrt(2 + 2/sqrt(5)) * cos(sqrt(13)*Pi/10).
Product_{n>=0} (1 + 1/a(n)) = sqrt(2 + 2/sqrt(5)) * cos(Pi/(2*sqrt(5))).
Product_{n>=0} (1 + 2/a(n)) = phi. (End)
G.f.: -2*(2+21*x+2*x^2)/(x-1)^3 . - R. J. Mathar, May 30 2022
Sum_{n>=0) 1/a(n) = (Psi(4/5) -Psi(1/5))/15. See A200135, A200138. - R. J. Mathar, May 30 2022
MATHEMATICA
Table[(5n+1)(5n+4), {n, 0, 60}] (* or *) LinearRecurrence[{3, -3, 1}, {4, 54, 154}, 60] (* Harvey P. Dale, Mar 17 2019 *)
PROG
(PARI) a(n)=(5*n+1)*(5*n+4) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A362050 A095210 A156469 * A208954 A269507 A302942
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 22:48 EST 2023. Contains 367526 sequences. (Running on oeis4.)