login
A001545
a(n) = (5*n+1)*(5*n+4).
2
4, 54, 154, 304, 504, 754, 1054, 1404, 1804, 2254, 2754, 3304, 3904, 4554, 5254, 6004, 6804, 7654, 8554, 9504, 10504, 11554, 12654, 13804, 15004, 16254, 17554, 18904, 20304, 21754, 23254, 24804, 26404, 28054, 29754, 31504, 33304, 35154, 37054, 39004, 41004, 43054
OFFSET
0,1
FORMULA
a(n) = 50*A000217(n) + 4.
a(n) = 50*n + a(n-1) with a(0)=4. - Vincenzo Librandi, Jan 20 2011
From Amiram Eldar, Jan 23 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(1 + 2/sqrt(5))*Pi/15 = 0.2882687....
Sum_{n>=0} (-1)^n/a(n) = 2*log(phi)/(3*sqrt(5)) + 2*log(2)/15, where phi is the golden ratio (A001622).
Product_{n>=0} (1 - 1/a(n)) = sqrt(2 + 2/sqrt(5)) * cos(sqrt(13)*Pi/10).
Product_{n>=0} (1 + 1/a(n)) = sqrt(2 + 2/sqrt(5)) * cos(Pi/(2*sqrt(5))).
Product_{n>=0} (1 + 2/a(n)) = phi. (End)
G.f.: 2*(2+21*x+2*x^2)/(1-x)^3. - R. J. Mathar, May 30 2022
Sum_{n>=0} 1/a(n) = (Psi(4/5) - Psi(1/5))/15. See A200135, A200138. - R. J. Mathar, May 30 2022
From Elmo R. Oliveira, Oct 23 2024: (Start)
E.g.f.: exp(x)*(4 + 25*x*(2 + x)).
a(n) = A016861(n)*A016897(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MATHEMATICA
Table[(5n+1)(5n+4), {n, 0, 60}] (* or *) LinearRecurrence[{3, -3, 1}, {4, 54, 154}, 60] (* Harvey P. Dale, Mar 17 2019 *)
PROG
(PARI) a(n)=(5*n+1)*(5*n+4) \\ Charles R Greathouse IV, Jun 17 2017
KEYWORD
nonn,easy
STATUS
approved