login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210554
Triangle of coefficients of polynomials v(n,x) jointly generated with A208341; see the Formula section.
7
1, 2, 2, 3, 5, 4, 4, 9, 12, 8, 5, 14, 25, 28, 16, 6, 20, 44, 66, 64, 32, 7, 27, 70, 129, 168, 144, 64, 8, 35, 104, 225, 360, 416, 320, 128, 9, 44, 147, 363, 681, 968, 1008, 704, 256, 10, 54, 200, 553, 1182, 1970, 2528, 2400, 1536, 512
OFFSET
1,2
COMMENTS
For a discussion and guide to related arrays, see A208510.
Also the number of multisets of size k that fit within some normal multiset of size n. A multiset is normal if it spans an initial interval of positive integers. - Andrew Howroyd, Sep 18 2018
LINKS
FORMULA
u(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
T(n,k) = Sum_{i=1..k} binomial(k-1, i-1)*binomial(n-k+i, i). - Andrew Howroyd, Sep 18 2018
T(n,k) = (n - k + 1)*hypergeom([1 - k, n - k + 2], [2], -1). - Peter Luschny, Sep 18 2018
EXAMPLE
Triangle begins:
1;
2, 2;
3, 5, 4;
4, 9, 12, 8;
5, 14, 25, 28, 16;
6, 20, 44, 66, 64, 32;
7, 27, 70, 129, 168, 144, 64;
...
First three polynomials v(n,x): 1, 2 + 2x , 3 + 5x + 4x^2.
The T(3, 1) = 3 multisets: (1), (2), (3).
The T(3, 2) = 5 multisets: (11), (12), (13), (22), (23).
The T(3, 3) = 4 multisets: (111), (112), (122), (123).
MAPLE
T := (n, k) -> simplify((n + 1 - k)*hypergeom([1 - k, -k + n + 2], [2], -1)):
seq(seq(T(n, k), k=1..n), n=1..10); # Peter Luschny, Sep 18 2018
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208341 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210554 *)
PROG
(PARI) T(n, k)={sum(i=1, k, binomial(k-1, i-1)*binomial(n-k+i, i))} \\ Andrew Howroyd, Sep 18 2018
CROSSREFS
Row sums are A027941.
Sequence in context: A317050 A243970 A282443 * A208912 A210212 A209762
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 22 2012
EXTENSIONS
Example corrected by Philippe Deléham, Mar 23 2012
STATUS
approved